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I Introduction

In this note we study a typical initial-boundary value problem for the discrete Boltz-
mann equation in one dimensional space.

We consider a discrete velocity gas which consists of particles with a finite number
of velocities vi, i E I, where vi are constant vectors in R3. Let be the mass

density of gas particles with the velocity Li at time t and position (x, y, z) E R3. In the
discrete kinetic theory, the state of the gas in motion is determined by the densities Fz
whose time-evolution is described by the so-called discrete Boltzmann equation [3].

We suppose that the gas occupies a strip n = {(x, y, z) E R3; 0  X  11 between
two rigid walls located at x = 0 and x = 1, and that the motion of the gas is homogeneous
in both of the y and z-directions. In this case the densities Fi are depending only on
(x, t) and satisfy the following one-dimensional discrete Boltzmann equation in the region
W 

where the summation is taken over all j, E I. Here we denoted by vi the x-component
of the velocity The coefficients A"3 in ( 1 ) are non-negative constants satisfying the
usual conditions :

for i, j, E I. Note that (A2) implies the conservation of momentum (in the x-direction)
in the microscopic collision process.

Concerning the interaction between particles and rigid walls, we assume, for simplicity,
that the particles impinging on the wall x = 0 or x = 1 rebound according to the so-called
diffuse reflection law [4] :

where and in what follows ~- (resp-Et) means the summation taken over all j E I with
vj  0 (resp.vj &#x3E; 0). The coeiRcients Bij and in (2) are non-negative constants
satisfying
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This condition implies that there is no momentum flow (in the x-direction) on the walls
x = 0 and x =1. We assume in addition that there exists a constant Maxwellian z E

7} satisfying both of the conditions in (2), namely,

Finally we prescribe the initial densities :

where 0  x  1. Thus our problem has been formulated as an initial-boundary value
problem (1), (2), (3).

Recently, for the pure initial value problem (1), (3) on the whole 
the global existence of solution was proved when the initial densities are bounded and
non-negative [1], [2]. On the other hand, nothing is known about initial-boundary value
problems. The aim of this note is to show a global existence result for the initial-boundary
value problem (1), (2), (3).

This work was done while the author was visiting the Laboratoire de Mod6lisation
en Mécanique, Universite de Paris VI. He is grateful to Professor H. Cabannes, Professor
R. Gatignol, and to the other members of the laboratory for their hospitality.

2. Main result

Let us denote by C+ be the space of functions which are continuously differentiable
and are positive. Our global existence result is then stated as follows.

Theorem. (global existence) Suppose that the initiale data Fio,i E 1, belong to
C+ ( ~0,1 J ) and satisfy the compatibility conditions up to order 1 on the boundaries x = 0
and x =1. Then the problem (I), (2), (3) has a unique global solution i E I} satisfying
Fi E 1] ] x [0,00 )), i E I.

For the proof of this theorem, it suffices to show a local existence result and a suitable
a priori estimate. In order to state these two results shortly, we introduce the following
notations.

where the maximum is taken over all i E I and x E (o,1).
Proposition 1. (local existence) Suppose that the initial data satisfy the same condi-
tions as in Theorem. Then there exists a positive constant To depending only on Eo such
that the problem (1), (2), (3~ admits a unique soiu tion satisfying Fi E C+ ( (o,1 ) x [0, To ]), i E
I. Moreover, we have

The life span To of the local solution depends only on Eo, and therefore we can extend
the solution globally in time, if we have the following a priori estimate for E(t).
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Proposition 2. (a priori estimate) Consider a solution to the problem (1), (2), (3),
which satishes Fi E C+(~0,1~ ] x [0, TI), i E I, for ~’ &#x3E; 0. Then we have

where C &#x3E; 1 is a number and 7~ &#x3E; 0 is a constant depending only on EQ .

The local existence result stated in Proposition 1 can be obtained without great dif-
ficulty, because the standard iteration method is applicable to the problem (1), (2), (3).
So we omit its proof. In order to prove the a priori estimate (7), we derive two kind of
inequalities. The first one, given in Lemma 1 below, is regarded as a difference inequality
for E(t) but it involves the following quantity :

where Fi is the summation taken over all i E I, and where J is an interval in [0, 1] and
IJI denotes its length. The second one, in Lemma 2, gives a sharp upper-bound of the
quantity M~t, r).
Lemma 1. Let us fix a constant V such that V &#x3E; max Ivi 1. Then there are two

numbers C1 &#x3E; 1 and C2 &#x3E; 0 such that for any h &#x3E; 0 with 2Yh  1, we have

Lemma 2.- There is a number C3 &#x3E; 0 such that for any r with 0  r  1, we have

where 6(r) is a continuous function of r such that 8(r) &#x3E; 0 for 0  r  1 and 6(r) --&#x3E; 0 as

r - 0.

Remark. Among conditions for the coefficients Akp, Bij and stated in the first

paragraph, we use (A1), (A2) and (B l ) in the proof of (9), whereas we need (A1), (A3~, (B1)
and (B2) to prove (10).

Once the above two lemmas are established, it is straightforward to derive the a priori
estimate (7). In fact, substituting (10) into (9), we have

We choose a positive constant h so small that C2C3Eos(2Vh)  1/2 ; h depends only on
Eo. By this choice of h, we obtain

which shows that the estimate (7) holds true for C = 2C1 and I1 = h-1 log(2C,Eo). This
completes the proof of Proposition 2.
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3. Proof of the lemmas.

We show Lemma 1 by a method similar to the one employed in [2]. Consider a solution
in the rectangle R = (0,1) x [to, to + h], where to &#x3E; 0 and h &#x3E; 0 with 2Vh  1. Let cx E I.

We put Ia = E I; vi = va) and

Then, summing up the equations in (1) for i E Ia, we obtain

Note that the right-hand side of (12) does not contain the summation with respect to
k E Ia. Let (xl, tl) E R and let us denote by la the backward va-characteristic through the
point (xl , ti ) . We integrate (12) along the characteristic ~ in order to obtain an expression
of Fa(x1, t1 ). Here we only treat a typical case where va &#x3E; 0 and the characteristic .~a
meets the boundary x = 0 at a time t = t* with to  t*  and therefore the resulting
expression of Fa(xl, tl ) contains the boundary value Fa(0, t*). We see from (2) that
this boundary value is estimated in terms of ~~ F~(o, t*). Furthermore, we can derive
an expression of Fp(O, t*), va  0, by integrating (12) (with a replaced by (3) along the
backward v,6 -characteristic through the point (0, t*) ; note that this vp-characteristic meets
the base t = to of the rectangle R. Thus we can reach an estimate of the form

where C is a constant.
In order to estimate the integrals on the right-hand side of (13), we make use of the

following conservation equations of mass and momentum :

We have used (Al) and (A2) to derive (15). Besides the va-characteristic fa defined
previously, we consider the following space-like lines + and - in the rectangle R : t±
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are the straight line with slope ~V, which pass through the point (Xl, ti). Now we make
a combination (14) x va - (15) and integrate the resulting conservation equation over the
triangle defined by = t* and .~_. Next, we integrate (14) over the trapezium defined
by ~,~ = 0, t = t* and ~-, and also over another trapezium defined by t = t*, X = 0, t = to
and ~_, and then use the fact that ’EiviF¡ = 0 on x = 0, which is a consequence of (Bl).
Finally, combining these three integrals, we find that

for some constant C. The second integral in (13) can be estimated similarly. Substituting
these bounds into (13) gives the desired inequality (9), and therefore the proof of Lemma
1 is complete.

In order to prove Lemma 2, we use the following equality which is a modified version
of the H-theorem.

Here E 7} is the constant Maxwellian in (B2) ; we have used (Al) and (A3) to
derive (17). Making use of (B 1) and (B2) together with the fact that yylog is a convex
function of 77 &#x3E; 0, we see that the flux ~~ vifi log(F¡/Mi) in (17) is non-positive on x = 0
and non-negative on x = 1. Therefore, integrating (17) over x E ~0,1~ ] yields

This inequality was first obtained by Gatignol [4]. On the other hand, integration of (14)
over x E [0, 1] yields

since we have = 0 on x = 0 and x = 1 as a consequence of (Bl). We make
a combination (18) - (19) x log Eo and integrate the resulting inequality over the time
interval [0, t. Then, taking account of the inequality 771 logyyj ]  77 logq + 1 &#x3E; 0), and
using the integral form of (19) over [0, t], we arrive at the estimate

where C is a constant. This estimate combined with the argument of Grandall and Tartar
[5] yields the desired inequality (10). We omit the details and refer the reader to [5].



III-6

References

[1] J.M. Bony, Solutions globales bornées pour les modèles discrets de l’équation de Boltz-
mann, en dimension 1 d’espace, Journées "Equations aux Dérivées Partielles", Centre
de Mathématiques de l’Ecole Polytechnique, 1987.

[2] H. Cabannes and S. Kawashima, Le problème aux valeurs initiales en théorie cinétique
discrète, C.R. Acad. Sci. Paris, 307, Série I, 507-511 (1988).

[3] R. Gatignol, Théorie cinétique de gaz à répartition discrète de vitesses, Lecture Notes
in Physics 36, Springer-Verlag, New-York, 1975.

[4] R. Gatignol, Kinetic theory boundary conditions for discrete velocity gases, Phys.
Fluids, 20, 2022-2030 (1977).

[5] L. Tartar, Existence globale pour un système hyperbolique semi-linéaire de la théorie
cinétique des gaz, Séminaire Goulaouic-Schwartz, Ecole Polytechnique, 1975.

S. Kawashima

Department of Applied Science
Faculty of Engineering 36
Kyushu University
Fukuoka 812, Japon


