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Consider in the linear operator J with matrix:

It defines a two-form c~ by:

(R 2n, w) is the standard symplectic space.
A linear map M E will be called symplectic if it preserves w ; that is:

This leads us to the characterization:

Let Q C be an open subset. A nonlinear map E C1(n; R2n) will be called symplectic
if its derivative r..p’ (x) is symplectic for every x C Q. Traditionaly, such maps were called
canonical. Note the requirement that p be at least C1.

Symplectic geometry starts with the simplest possible question: given two open subsets
U and V in R 2N , is it possible to send Ll into V by a symplectic transformation ? In other
words, does there exist a symplectic such that c v ?

A necessary condition has long been known. Since c~ is the standard measure on

R2n, symplectic transformations must preserve volumes (Liouville’s theorem). So, if U
can be sent into V by a symplectic transformation, we must have:

For n = 1, this condition is almost sufficient. For n &#x3E; 1 however, this is very for from

being the case. Gromov [G] startled the mathematical world by proving:
Theorem 1. Consider in = Rn x Rn

the unit ball
n

the vertical cylinder

a,nd assume rB can be sent into RC1 by a symplectic transformation. Then:

(p, q), so the vertical cylinder C1 is to be distinguished from horizontal
cylinders such as:

.. ’"" ’""
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Note that vol(B)  oo while vol(C) = oo, so that, if one relied on volume considerations,
one would have concluded that rB can always be sent into RC.

To understand Gromov’s result, and more like it, we introduce a definition.

Definition 2. A symplectic capacity is a map c : P(R 2n) -+ U f + 00 1with the
following properties:
conformal invariance: if p E R2n) and a &#x3E; 0 are such that p*o = acv, then

monotonicity if A C B C R,2n, then

scaling

Once we have a symplectic capacity we can prove Gromov’s theorem:
Proof Assume there is p C R2n) which is symplectic and C RCI- It is well-
known that, for any e &#x3E; 0, there is a §3 E CI (R 2n, R2nl which coincides with p on ( 1-rB.
So henceforth we assume that p is defined on all of R2n. We have p E CI(R2n,R2n) and

C RCI. Then

Of course the main problem is to show that symplectic capacities exist at all. The firstone
to do so was Gromov [G] who defined "symplectic width" using holomorphic disks. His
definition makes sense in any symplectic manifold. In [EH], we give an existence and
representation theorem for a symplectic capacity in R 2n.

Theorem 3. There exists a symplectic capacity c with the following property. Let
U C R2n be a bounded open set, such that its boundary au is a C1 hypersurface of
contact type. Then 8U carries a closed C’ curve, such that

To say that 8U has contact type means that the restriction of w to 8U has a primitive
Q such that Q A is a volume form on This will be the case if for instance U is

star-shaped with respect to some point.
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Conditions (1) and (2) do not depend on the time parametrization of y. If for instance
we choose a non-vanishing continuous section n(x~ of the normal bundle, we can rewrite
( 1 ) as follows:

11

and this equation defines a flow on o9U if n(x) is locally Lipschitz. This is the Hamiltonian
flow naturally associated with Theorem 3 then asserts that the capacity of U is equal
to the action integral along some particular closed trajectory of the Hamiltonian flow.

Note that this particular trajectory may be run around several times ; that is, the
right hand side of formula (2) is defined up to multiplication by an integer.

Let us try the representation formula on B. The Hamiltonian flow on 88 is well-

known ; all its trajectories are closed and the action along them is 7r. So we get

for some 1. Direct arguments show that c(B)  27r so k = 1, and we have

proved half of the scaling formula.
Now for C1. The Hamiltonian flow on aC, also has only closed trajectories, all of

which have action 7r. We get c(C1 ) = k-7r, and we show that the integer k must be 1.

Hence the scaling formula.
What about the horizontal cylinder C1 ? The Hamiltonian flow runs along generatrices

and there are no closed trajectories. We find therefore that

So the capacity is able to distinguish between vertical cylinder (c(C1 ~ _ 7r) and horizontal
ones (c(Ci ) = oo). What is relevant here is clearly the axis of the cylinder, that is the

two-planes

The second one is isotropic which means that the restriction of o vanishes. We can exploit
this property. Define an ellipsoid to be the set where q(x)  1, for some positive definite
quadratic form q.

Proposition 4. Assume a linear map NI 6 £(R’ ) preserves the capacity of ellipsoids.

Then M is symplectic or antisymplectic:

Indeed, such a map will change a,n isotropic 2-plane into an isotropic 2-plane. Some
linea,r algebra then gives the result. It carries over to the nonlinear case.
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Theorem 5.- Assume a nonlinear map p E preserves capacities. 
exists, then ~’(0~ is symplectic or antisymplectic.

This is a remarkable result because it enables us to extend the notion of symplecticity
to the Co category. It also enables us to prove a C°-rigidity theorem.

Theorem 6.- Let pn E C1 (B, R2n~ be a sequence of C1 symplectic embeddings con-
verging uniformly to ~. If ’P’ (0) exists, then it is symplectic or antisymplectic. s

In fact, since the pn are symplectic they preserve c. Their C°-limit p must also
preserve c, and by theorem 5 it will be symplectic or antisymplectic at any point of diffren-
tiability.

As a consequence, we get a celebrated result of Eliashberg and Gromov (G).

Corollary 7.- Let P be a compact symplectic manifold and pn a sequence of symplectic
diffeomorphisms, converging uniformly to a diffeomorphism p. Then p is symplectic.

Proofs will be found in [E-H]. The starting point of this investigation is the theorem
of Viterbo [V].
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