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1 Introduction

When a shock wave produced by an explosion or by a fast flying projectile hits an
obstacle, the reflection of shock waves occurs. To determine the place of the reflected shock
front and the flow field behind the shock is the main subject, which we are going to study.

If the shock front and the surface of the obstacle are planes parallel to each other, and
the shock moves towards the obstacle with constant velocity, then the reflection problem
has been solved by Courant and Friedrichs in [1]. Later, in the two dimensional case
(steady flow in two dimensional case or unsteady flow in one space dimensional case),
this problem was solved locally by Gu Chaohao and others (see (2~,~3~) . However, in the
case with more independent variables, such problem is still open. Recently, by means of
microlocal analysis A. Majda f 4,5~ and G. Metivier [61 studied problems on local existence
of shock front solution and interaction of two shocks for the system of conservation laws.
On the basis of these works we are able to deal with the problem on reflection of shock
waves.

Our main purpose in this paper is to prove the local existence of the solution for the

problem on reflection of shock waves in multi-dimensional case. First, we formulate the
original problem as a Goursat problem for the system of conservation laws with one free
boundary and another fixed characteristic boundary. Then after reducing it to a nonlinear
Goursat problem with two fixed boundary we find an asymptotic solution. Finally, by
Newton’s iteration we establish a convergent sequence, and the limit offers a solution
for the nonlinear problem. At each step including determination of the first term in the
sequence we need to solve a linearized Goursat problem and derive corresponding estimates.
The details are referred to [10].

2 Formulation

Let us consider the reflection of shock front for inviscid unsteady flow. For the nota-
tional simplicity we only consider the case of space-dimension 2. The system of conservation
laws is

where (u, v) are the components of velocity, q 2 = u + v2s p, p, e, s represent pressure,
density, inner energy, enthalpy respectively. On the shock front the following Rankine-
Hugoniot conditions must be satisfied :

where x = 1/;( t, y) is the equation of shock front and [ ] represents the jump of correspond-
ing quantity across the shock front. For the rigid wall as a fixed boundary, the boundary
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condition is

where (nx, ny) is the normal direction of the boundary. Let E be a,given surface of obstacle,
S be an incident shock front. Suppose that the flow ahead of ~’ is static and we know the
motion of the shock wave in the case when the obstacle is absent (e.g. an explosive shock
wave moves into static flow) . At t = 0, S meets E at point 0, then for t &#x3E; 0 the reflection
of shock wave occurs. Now we are going to determine the reflected shock front t &#x3E; 0 and
the flow field behind the reflected shock front.

We choose the coordinates such that point 0 is the origin, the equation of E is x = ~(y),
where p (y) is of C°° and ~p (0) _ = 0, ~p (y)  0. The equation of S is x = x (t, y) on
the left side and the right side the parameters of flow field are ua, Va, pa, pa and ub, vb, pbPb
respectively. Since the incident shock front for Euler system is an extreme shock front,
then the appearence of E will not inflilence the motion of S’ and change the flow field until
it meets S. The intersection E n S can be determined by the equation x = p (y) and
X = X (t, y), we denote it as

Denoting the equation of the reflected shock front S1 issued from a by x = y), the
expected solution of (2.1) can be written as

where U is the abbreviation of (u, v, p, p). Our result in the paper is :

Theorem.- Suppose that the problem on reflection of shock front is formulated as
above, are C°° smooth, then there exist COO function
1jJ(t, y) and near the origin, such that satisfies (2.1) in 0(y)  x 

(2.2) on x = and (2.3) on x = cp(y).
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3 Orientation.

We view the reflection problem as a nonlinear Goursat problem with one characteristic
boundary and another non-characteristic free boundary. On the edge or, by freezing our
problem at a point we can find the parameters of the flow field on a behind the reflected
shock front and the slope of the shock front at each point on u. In this stage we use the
known results on reflection of plane shock wave with constant velocity attacking a plane
wall, the relative formula and computation can be found in (I~.

By a coordinate transformation

the edge a will be placed on t’ = 0. Then by another coordinate transformation

the problem is reduced to a new nonlinear Goursat problem with two fixed boundary. The
image of E is x1 = 0 which is still a characteristic boundary, and the image of S is X2 = 0,
which is non characteristic. Here we notice

it means the transformation (3.2) is non singular.
The nonlinear problem now has the form

The linearization of (3.3) is
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The boundary xl = 0 is characteristic and it can be embedded in a family of characteristic
surfaces. The boundary X2 = 0 is noncharacteristic one, satisfying uniform Lopatinski
conditions (see [4]).

Next our main steps are :

1) Obtain the existence of solution for the linearized problem (3.4) and establish corre-
sponding energy estimates.

2) Find same asymptotic solutions of nonlinear problem (3.3)
3) Using Newton’s iteration scheme to construct a convergent sequence of approximate

solutions, the limit of the sequence is the solution of (3.3).

4 Discussion on the linearized problem
The existence of solution for the linearized problem is valid according to [7-9]. In

order to improve the smoothness and establish the energy estimates we introduce some
notations as follows :
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Next we are concentrating on establishing the energy estimates. The expected estimate is

(4.1)

To establish the desired estimate we use :

a) Transformation of independent variables and unknown functions :

b) Dyadic partition of unity :

where X E C (~,2) and Ex (2-it) = 1.
c) Dilation :

After these procedure the original estimate is reduced to an estimate of regular Sobolev
norm (without special weight (Xl + ~2 ) -1 or of solution for an initial boundary
value problem in the domain {001-1} with normal size. Since the
domain is away from t = 0, we do not need worry about degeneracy of the system
on t = 0 any more. Meanwhile, we notice that the boundary 0 = 0 is characteristic,
and the boundary 0 = 1 is noncharacteristic, on the later the uniform Lopatinski
condition is satisfied. By using another partition of unity with respect to 0 E (o,1~,
we can separate the estimate near the boundary 0=0 and 0=1. Near 0 = 1 we
use Majda’s result in [4], and near 8 = 0 we use the theory of symmetric hyperbolic
system.
Let us give more explanation on the estimate near 0=0. Near this boundary the

estimate (4.1) after transformation a) - c) becomes
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where u is supported in~tl,0~~o with 8"0  1, L’ is a slight modification of
L, it is still a symmetric hyperbolic operator, and

By a standard procedure as acting tangential operators on the both sides of the system and
integrating by parts, it is easy to have an estimate for Next we are going to show

x&#x3E;
that starting from the estimate for we can obtain the estimate for With-

" 
ta) 

" 
ca)

out loss of generality we take A = 1 and write the system by a coordinate transformation
as

where Ao &#x3E; 0, Al = R ~) with R being a nonsingular matrix. Splitting u as 
corresponding to the block form of A i we have

where the subscripts a, b indicate the corresponding blocks. Differentiating (4.9) with
respect to x implies

Now since we have obtained an estimate for from (4.8) we know then

from (4.10) we can obtain the estimate for II(Ub)zIlHO,k-2, and as well. Using
(4.8) and (4.10) alternatively the estimate for IIUIIBK can be obtained.

We mention that in the linearized system (3.4), the coefficients depend on U,1/J. There-
fore, even for obtaining the estimate 1f6UII HO,k , we still need to check how much derivatives
of U and 0 are involved. In order to sketch that let us denote 6U by u and assume that
all coefficients depend only on U, because the dependency of all coefficients on 0 does not
cause more trouble. Usually, when we estimate V,, being tangential
differential operator, we need to control the term jj (V~1... VQk, Ll uIIL2. However, it is pos-
sible that in the expression ... L] u there will appear non-tangential derivatives of
~c now. So we neeed to use the following facts to get rid of the difficulty.
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1. We split u to (ua, Ub) as above, the nontangential derivatives of ua can be expressed
by tangential ones of u.

2. If NI is a tangential differential operator with coeiRcients depending on U E Bk, then
we have

where can be expressed as :

depending on U and tangential derivatives up

Alternatively using q-form or p-form of the expression
t r .. _ - .. - .

5 Treatment on nonlinearity.
As we showed in paragraph 3, first we look for asymptotic solutions for the nonlinear

problem (3.3). The first asymptotic solution is Uo = V(y), ibo = where V(y),T(Y)
satisfy

In fact, V (y) , r(y)t are the solution for the frozen problem at each point on a. Define

Uj,1/;j successively by

where
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we can verify

For large j the right side of (5.3) has bounded Sobolev norm with weight (Xl + x2)-1 or
t~a-1. Fix j, set (U~°~, ~~°~) _ By Newton’s iteration scheme we construct a
sequence ~~ri~} as

Regarding the process from (U (,), to (U~n+1~, as a map 1r, we can prove the

map is an inner map in the set
r. ,%

if T is small, A is large and k &#x3E;_ 10. Moreover, Jr is contractive for a weaker norm. Thus
the sequence (U (n), ~ ~ ~n~ )~ is convergent, and the limit offers a solution for the nonlinear
problem.

6 Remarks.

Remark 1.

In paragraph 2 we assume that the motion of the shock wave is known, if the obstacle
does not appear. This assumption can be relaxed. We appreciate that G. Metivier gives a
good comment on that.

Remark 2.

Our discussion is also available for reflection of shock front for inviscid steady flow in
three dimensional case. The conclusion is : if the frozen problem at some point on the
intersection of the shock and the obstacle has a solution, then the reflection problem in
three dimensional space can also be solved locally near the given point.
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