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I. INTRODUCTION. 

We point out, in the following, a way to look at superlinear elliptic

equations from an algebraic geometry and topology point of view. The proofs

which are provided are sketchy, though enough precise to allow an interested

reader to complete them

A superlinear elliptic equation is a variational-type équation where a self-

adjoint unbounded operator "competes" with a non-linearity.
The model equation is :

g is, for sake of simplicity, assumed to satisfy :

v

In the most general context, (Hl) is replaced by Caratheodory conditions

on g .

(H2) remains unchanged and justifies the expression "superlinear".
(H3) is replaced, in dimension 1 and 2, by similar conditions.

Finally (H4) may be replaced, again for sake of simplicity, by the following
more constraining equation :

Observe that (H2) and (H5) imply (H4).

We will denote X the set of hypotheses (Hl)-(H2)-(H3)-(H5).

Under these hypotheses the operator :
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is a compact operator. (A is the inverse of the Laplace operator underP P Ç2 
P

Dirichlet boundary conditions).

Several different results lead to formulate the following conjecture :

Conjecture : Any equation satisfyingX has infinitely many solutions.

As we pointed out, X may be weakened in the statement of the conjecture.

Nevertheless,features as (H2) and (2) are essential.

The results which lead to formulate this conjecture are of three types :

1. The conjecture holds for n=1. In this case, when one is seekingfor periodic

solutions of such equations on a given interval, say [0,I], H. Jacobowitz

[1] has proved the conjecture under hypotheses close to X ; while P. Rabino-

witz [2] has proved this conjecture, under the same type of hypotheses, for

the Dirichlet boundary conditions.

2. In case g is odd in the second variable s , the conjecture holds in

any dimension. Again, this follows from A. Ambrosetti - P. Rabinowitz [3]

results; and in fact a careful analysis allows to trace it back to the

Lusternik and Schnirelman celebrated theorem of existence of infinitely

many critical points for an even functional defined on the unit sphere
of a Hilbert space and satisfying some compacity condition as the Palais-

Smale condition (see M. Krasnosls’kii [4] for further precisions).

3. In case g has the special form g(x,u) = with 1 .P  n+2’ n2
it follows from the results in [5] and [6] (A. Bahri - H. Berestycki
and A. Bahri - P.L. Lions) that (1) has infinitely many solutions for

1  p  -n- , while it follows from [7] that ( 1 ) has infinitely many solutions2 
-!

for a residual set of functions f(x) in H (
Although 1., 2. and 3. would, by themselves, naturallylead to such a

conjecture, there are some other results in [7] which show the unity in

behaviour of superlinear type functionals and support therefore even

more such a conjecture.
These results are the following :
Let
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(3) -Ae. = ; (pieei) i-th eigenvalue and eigenfunction of the
11111

Laplacian under Dirichlet boundary conditions, ordered with increasing

P!S .1

the orthogonal projection.

It is proven, in [7], that critical points of J of strictly positive

energy are in one to one correspondence with critical points of I of

strictly positive energy. It is also proven, in [7], that the functionals

J and I satisfy a "Galerkin-type" (C) condition of Palais and Smale; namely :

Proposition A : Let (uk) E E k a sequence such that 0 while

(I(u k» is bounded; then (uk) has a convergent subsequence.

Similarly, let (v k )eE k n S a qequence such that 0 while

(J(vk)) is bounded; then (vk) has a convergent subsequence.

Superlinear-type functionals J have furthemore a key-feature, which is

stated in the following proposition :

Proposition B : Let (v.) be asequence on S . Then (J(v.)) tends to + ce
i 1

if and only if v. i tends weakly to zero.

As a side-remark, one can see, considering the functional 2013 , the

relationship between superlinear-type problems and the weakly continuous

functionals studied by M. Krasnosels’kii [4] (see [5] and [7] for further

precisions).

Propositions A and B lead to the following theorem, proven in [7] and

which shows the remarkable unity in behaviour of superlinear-type problems :

Theorem 1 [7] : : For any ae R , there exists and n0(a) E N such



XXI-4

that if I has no critical value in [a,p(a)], then the level set

s. t I(u) &#x3E; a} is diffeomorphic to a disk for k&#x3E;n o (a).

Theorem 1 is a negative-type result. It rests upon the hypothesis that a

superlinear-type functional has no critical value in a large enough interval.

As shown in [7], contradiction arguments allow sometimes to transform

this negatively formulated result in existence results.

Some thought also shows that theorem 1. provides a tool in order to study

the conjecture we introduced, or at least some strong form of it : Namely,

assume that we wish to prove the existence of infinitely many solutions

to (1), which are stable under perturbation. Some thought, together with

the remarks ending [7] (see in particular Remark 18 in [7]), show that these

solutions, considered as critical points, are limits of critical points of

I restricted to the finite dimensional subspaces Ek (for k large enough),

which, because of the stability under perturbation, have to induce a difference

of topology in the level sets of the functional IIE . Therefore, this
k

stronger statement implies that the level sets have to change at the crossing
of the related critical values and differ from disks one one side or the

other of these critical values.

Having pointed out the direction in which we think Theorem 1 may be useful,

we show in this paper that this theorem has natural implications on a

complexified version of the problem and leads to interesting questions in

algebraic geometry and and algebraic topology.

II. MILNOR’S FIBRATION AND SUPERLINEAR FUNCTIONALS :

We need to decide whether the set 1 fi E is a disk or not. We first
consider a simple case, where n=2 and g(x,s) = s . Writing down a vector
ka 

u in . Ek as u = Z xi e. , the set I a flEk is . as well :k k 

that is 1 ÛE, is a real algebraic set.
Introducing the polynomials :

and
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we consider then the homogeneized polynomial of q :

We now consider Q as a real coefficient polynomial in the complex variables

and we introduce :

X is equipped with a natural involution :

and, denoting Fix T the fixed point set of T , we have :

Due to the fact that t cannot be zero on Fix T, we have the following

easy proposition :

We have :

0

Proposition 1 : Fix T is diffeomorphic to two disjoint copies of ranEk .
The proof of Proposition 1 is straightforward and implies the following

corollary :

Corollary 1 : Ia f1 E k is a (closed) disk if and only if Fix T is diffeomorphic
to two disjoint copies of a disk.

Therefore, we may view properties of I an Ek as properties of Fix T.
On another hand, we have the following remarkable result on the topology
of sets as X :

Theorem 2. ([8]; Milnor) Let P(zi, ... 9z k+l ) be a homogeneous polynomial,
of order m, which is non singular outside the origin (0,...,0).
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Then, for any cE 0153 , * the set F = s.t 

has the homotopy type of a wedge of (m-l) k+l -s P heres Sk . .

Therefore, if Q(zl,...,zk 1) is non singular outside the origin, then X

has the homotopy type of a wedge of 3 -sphères Sk . . Observe also that,

under such a condition, X is a 2k-dimensional riemannian manifold (with

the induced standard metric) and that T defines an isometry of X ; the

problem being to decide when Fix T is made up of two disks. Observe lastly

that T is an involution of X . In order to be able to apply Theorem 2, we

need Q to be non singular outside the origin. The critical points of Q

are given in the following :

Proposition 2 : Consider Q as a polynomial on 

The critical points of Q are then either critical points of p(zl,...,zk)
with = 0 (z1...,z k9 0)= 0 or critical points (z ,...,z )~’ 1 i K’ 1

such that is critical for q, with zk+1  arbitrar ~ 0

and °

Proof of Proposition 2 : Either a critical point has 0 .

zk+1 is non zero. Then, is critical for

in the variables 

while the vanishing of the derivative along zk+l provides with

It is clear that we may assume, after Proposition 2, that the only critical

points are (0,...,0). Indeed, we may perturb a, p, Q and even ~ slightly
in order to be in this situation. That this situation is generic requires
some technicalities which we leave aside here.Nêvertheless the interested

reader will convince himself of this after some thought.

The example we developped here generalizes of course to other polynomials

p of degree 2m ; m&#x3E; 1. These polynomials need not to be homogeneous (Observe

however that, in Proposition 2, p will be replaced by its 2m-homogeneous

part). Again, perturbation arguments on a, p and Q (even ~ which changes

the p!s) imply a Proposition similar to Proposition 2 and therefore allows1

to apply Theorem 2.

We are thus left with non-linearities g which are not polynomial; and these
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are the most frequent ones.

Although it is not possible then to replace g globally by a polynomial,

it is still possible, in these superlinear problems, for given a and k

to do so in order to study 1 fi E .
Let us consider the simple case g(x,s) = g(s) with a growth of g controlled

by at infinity. G(s) is fSg(T)dT and grows faster than ; E
is finite dimensional. Hence 1 flE is bounded and there is a uniform

say b , on functions in 1 DE .say b , on functions in nEk °

Let p be a polynomial such that :

Clearly, q is lower bounded by p ; 1 
tends to zero when m

m ~ 
C ([-b,b])

tends to +00 ; and for m large enough. Observe also that

qm behave as es at 1nf1n1ty in s .

Therefore, for m large enough, the set :

is contained in If e is less than 1, we thus have 
a 

k 
L

and thus : 
L

When E is small enough, the two sets 1 fi E and IDE hâve then the same
homotopy type and we are brought back to our polynomial situation.

Similar arguments, of one kind or another, allow to bring back all superlinear

type problems to this polynomial type situation.

We stress,at the end of this section, that all these approximation arguments
are suitable for the general conjecture and not only for a generic form of

it : .

Indeed, in the superlinear-type problems, having bounds on critical values

for these perturbed problems allow to pass to the limit. Again, this is a

technical point which can be checked directly.



XXI-8

k
III. INVOLUTIONS ON A WEDGE 0F SPHERES S .

We provide here a theorem relating the topology of the fixed point set

of an involution T acting on a wedge of spheres Sk to an algebraic
invariant of T . 

,

Namely, let :

We have

On the other hand, any homomorphism of a free S-module may be reduced over

2Z to the following form :

i.e T* may be read as a matrix built up with 1 or -1 terms on the diagonal

or also blocks of type (0 1) .’P 1 0

Definition : We define i(T*) to be the number of 1 and -1 on the diagonal
of such a reduction of T* .

We then have :

Theorem 3 : Let X be a finistic space which is topologically a wedge of
spheres Sk ; T an involution acting on X with fixed point set made up
of two connected components.

Then Fix T is acyclic over 712 if and only if i (T*) - 1 .

Remark : If furthermore X is riemannian and T is an isometry, then Fix T

is made up of two disks implies the diagonal term is (-1) by an Euler-Poincaré
characteristic argument. Indeed, ~ we then have : X( Fix T - ) = 2 = 

Hence the conclusion. Conversely, if i(T*)=l and the diagonal term is

(-1)k for T an involution which is an isometry, then FixT is 2Z 2- acyclie
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and each component has its Euler-Poincaré characteristic equal to 1.

Proof of Theorem 3 : Let E 2 - B2 be the classifying bundle for the
2013201320132013201320132013201320132013201320132013 2
1’12-action . °

Let

be the related Borel construction, which is a fibration with fiber X .

Consider the spectral sequence for this fibration as in G.E. Bredon [9].

The E2- term for such a fibration is :

v

where H is Cech-cohomology.

As X is a wedge of spheres Sk , , is zero for q ~ 0 and q # k :

and we also have :

On the other hand

G.E. Bredon [9]); where T * acts on H’"(X;ZZ2). Using then the matrix of T.
Vk Vk

acting on H (X;2Z) provided by (24), which still holds on H (X;2Z 2) =

Vk . 

2
H (X;S)0 2Z 2 we der1ve : t

hence (28).

We thus have only two non zero terms in the E2-sequence.
Observe now that FixT is non empty.

Therefore, (25) admits a global section. This implies that EP,O ;
which implies in turn that . 

00 2

00 2
We thus have :
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Hence :

Using again results of G.E. Bredon [9], we have :

Therefore :

FixT is assumed to have two connected components. Clearly, (33) implies
that these two connected components are X -acyclic if and only if i(T*) = 1.

Hence the proof of theorem 3.

From now on, X is defined to be the Milnor’s fiber at 1 for a homogeneous
non singular polynomial Q(zl,...,zk+1). T is complex conjugation.
We have a natural map, which is equivariant with respect to the 2Z 2- action
on X-X- via T :

We want in this section to derive équivalent forms of the conjecture
translated as properties of on which h is defined. 

k-1Observe that, choosing a point x 1 in XR and considering a sphere S
in the normal bundle at x 1 to XR in X , we have a well-defined map :

Let now E be a tubular neighbourhood of X in X ; DE being thus the
(k-l)-dimensional sphere bundle over X , (E,dE) is then a relative 

R ’ ’
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bundle over X~ and (X,Z,~E) is an excisive triad, which we may assume to

be stable under T. E retracts by deformation on X IR while retracts

by deformation on X-Z and we therefore have the following Mayer-Victoris

exact sequence, where we are using ~-coefficients :

All sets are invariant under the action of T and we, in fact, have a

commutative diagram :

We assume in the sequel that :

This assumption is justified by the following :

Lemma 2 : Given a superlinear type functional I and a E R, there exists

such that = 0 °   o°

Proof of lemma 2 : The critical points of I under the energy level a are

of finite generalized Morse index upperbounded by an integer kl(a). (The

definition and main properties of this generalized Morse index are stated

in [10]; [ll]).Indeed, under a given energy level a, the critical points
are bounded uniformly in Loo and this implies the uniform boundedness of the

dimension of the negative or null eigenspace of the linearized operator.

Using Proposition A , we derive a uniform bound on the generalized Morse

indices of the critical points of energy level under a, not only for I,

but also for I, ; and this bound k2(a) does not depend on k . Considering
k 

2

then k such that k-k 2(a) is larger than 2, standard homotopy type perturba-

tion arguments as in [10] (see also [11]; theorem 6.4) imply lemma 2.

In order to exploit (38), we need the following :
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Lemma 3 : Assume = 0 . Then, Hk(DE) = 0 ; Se 
where el and e2 are spheres of the normal bundle to at two points xl 1 and

x2 belonging to the two distinct components of XR .

is a bundle over X , which is simply connected.
Therefore, by Thom isomorphism theorem, we have, with TL-coefficients :

Writing down the exact sequence of the pair (z,DE) we derive :

a k-dimensional non compact manifold), we derive

On the other hand, we also have 0 by assumption.

Therefore :

The generators are clearly ej 1 and e2 ; ; hence the proof of lemma 3.

We show later on why the assumption = 0 fits superlinear-type

problems.

Lemma 3 and (38) imply that we have the following short exact sequence :

This sequence is stable by T* .

Let

We thus have :
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This sequence is again stable by T* as T* commute to g* .
We recall now that, if K is a group on which acts (the action is denoted

T* ) , we have : (see Bredon [ 9 ] )

We thus have :

Lemma 4 :The following sequence is exact

Proof : Let Ki. K2~ K3 denote respectively Hk(X) and C .

and we are dealing with chain complexes.
V

(48) allows to identify their homology as and lemma 4 follows

then immediately from (47). 
-t 

1

v

Corollary 2 t rank 3 Vp if XR ils Z 2 acyclic.
v

Proof : If XE is 712 -acyc1ic, then rank H (B 2Z 2 5’Hk(X»- i by theorem 3.
C has on the other hand at most rank 2 ; hence the result.

Observe now that, by (47), is a subgroup of HX&#x3E; ; therefore

Hk(X-X FI ) is free abelian over 2Z and T* . as acting on has a

reduction of type (24). The following proposition relates the number of 1

and -1 on the diagonal of such a reduction to the topology of X:R .

proposition 3 : Let i 1(T*) be the number of 1 and -1 in the réduction of

T acting on If Y, (X IR ) = 2 and X has two connected components

zz 2 - acyclic, and if 2e 1 is a boundary in X-X. . ii (T ) = ’ 1 or i1(T = 3 .2 1 
R
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If i 1(T*) = 1, the diagonal term is -1&#x3E;~~~ ; ; if = 3, one diagonal
term is (-1) and the two other ones are (-1) k-l .

In this latter case, if 2ej 1 is a boundary in X-X JK with 2ej 1 = 

T* ([61 ) = (_,)k[6] , and if X:JR is made up of two disks, then is a

wedge of spheres S k . 
.

Conversely, if i 1(T*) = 1, the diagonal term being (-1) k-1 , or i 1(T*) = 3

with and two (-!) k-1 , ils 
i -

As a corollary to Proposition 3, we have :

Theorem 4 : t Let be associated to a superlinear-type problem
at the value a as described in section 2. Assume 2el is a boundary in X-XR .
Then, if la n Ek is a disk, i 1 (T*) is equal to 1 or 3 ; with a diagonal term

equal to in the first case and diagonal terms equal to one (-1)
and two (-I) k-1 in the second case. Conversely, if is such, then

1 0 E is 2z 2- acyclic . Finally, assume that I has a non degenerate critical

point of Morse index k and critical level b . Let Q be associated to I at

the value b+e,e&#x3E;0 small enough. Then, if 1 OE is a disk, for k-k odd,
k-ko &#x3E;3 , i1(T*) = 1 or i 1(T*) = 3 (one (-I) k-1 or two (-I) k-1 and one (-1)~),
and if il (T*) is equal to 3, X-X R is a wedge of spheres S k .

Remark : in this latter case, i.e. when X-X is a wedge of spheres S k ,
the map T of (36) is null-homotopic. The map h of (35) is essential and

k-1 1 k
generates one (-1) in H (B 2z 2H /Z JK

Proof of Theorem 4 : The first part follows from Proposition 3. For the second

part, we show in lemma 8 below that under the assumptions of the theorem

on k-ko ’ 2eI is a boundary in X-X:R ’ , with 2ej 1 = g*([6]), T*([6]) = (-I) k[61
Hence Proposition 3 applies again X-X R is a wedge of spheres S k if i 1(T*)=3.
The proof of Theorem 4 is thereby complete.

Proof of Proposition 3 : ei 1 and e 2 are (k-l)-dimensional spheres 
and T

acts as antipodal involution on them. Therefore : t

C is a subgroup of and contains, by assumption, 2il£ej 1(b 2lle2 .
Thus :
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(50) implies.

(50) and (51) imply :

Therefore, using (48), we have :

On the other hand, by theorem 3 and the remark following it, is X Z -acyclic,
(made up of two connected components), with x(XE) = 2, if and only if there

is only one diagonal term, equal to (-1)k on the diagonal of T * acting on

tL(X;2Z). Therefore, under such hypotheses, we have :

Lemma 4, (54) and (55) imply :

We thus have two possibilities :

or, covering the other case in Proposition 3 :

and the first part of Proposition 3 is proven.

For the latter part, the assumption that 2eI 1 = g*([~1) where T*(161) = 

rules out immediately (58) if 2e 1 may be taken as a generator of C . Indeed,

if so, either 2eI disappears in H (B 
2 

yC) or, if not, is image of an element

in By symmetry, this holds also for 2e~ .
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We are thus left with the case C = 2Ze 1e 2Z e2 »

Then Hk-1 = 0 ; 1B (X-XE) is free abelian.

In higher dimensions, we have

and also :

Theref ore, if XR is made up of two discs, Hr (X-XR) = 0 f or r &#x3E; k .

Thus X-X:R is a wed g e of s p heres Sk .

This ends the proof of Proposition 3.

We justify in the following f our lemmas the assumptions in lemma 3, Proposi-
tion 3 for superlinear-type problems. Namely, we show, under some hypotheses

on a and k that H k-1 (ran Ek) = 0 L and that 2e 1 is a boundary in X-X IR "

Lemma 5 : There exists a &#x3E; 0 such that, for a&#x3E; a , 0
l 1 -1 k

Proof of lemma 5 : J (v) , vE S , has been def ined in (8) .

Let

,

One can see easily that the aks are bounded and converge, when k tends

to +00 to a = inf J(v).
° VES

Let

Clearly, we have, for any t

S DE, is a sphere of dimension k-1 in which J an Ek is strictly contained.
Therefore :
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On the other hand, under (Hl)-(H2)-(H3)-(H5), it is proven in [7]

(see [7]; Theorem 3), that there exists a constant a~&#x3E;0 such that if

J(v) &#x3E; à2 :

(66) the function x + I(xv) is increasing for 0  x x(v) and decreasing

f or X &#x3E; 

Hence, for any v in J f1E e there exists two values 0  X1 (v,a)’¡;; À2(v,a),
such that :

1(v, a) and ~2(v,a) are continuous functions of v and allow to identify

.

Hence, l n Ek retracts by deformation onto the set :

This set is diffeomorphic to JnE ; hence :k

Lemma 5 is there by proven.

We turn now to proving that, under the assumptions on a, I and k , 2el 1 is

a boundary in X-X , 2e - 1 = g*([8]) with T*([8]) = (_ 1 ) k [ S ] -

We first consider a polynomial on (E k+l , with real coefficients, ’
on which we assume :

(Al) Ql has a real critical point (al....,,a k+l ), non degenerate of index
k .
o

Let

is non degenerate, there is a Morse reduction of Q 1
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around (a 1 ,...,a k+1 ). This Morse lemma may be completed in complex coordinates,

while preserving real coordinates.
201320132013 1 . 1

Hence, we have a local diffeomorphism of preserving R , such that :

Consider then e &#x3E; 0 , small enough, and :

where Sk is the standard spheres in -k+1

F is a 2k-dimensional manifold with boundary F 
E 

, having the homotopy
E k . 

E 
.

type of a sphere S k . . Assuming k&#x3E; 1, is zero and F is therefore
orientable. Then R is a k-dimensional manifold with boundary ~R contained

e e

in âF ; therefore, R 
e 

defines a cycle in (F ,3F ). Let [R ] be the homology
e e e e e

class in R (F e ,3F defined by R c and [6] be the one defined by à .

We then have :

Lemma 6 : The intersection number of [0] and [R ] is ±2 if k-k is non

zero, even. We then also have T [6] = (_,)k[~] in where T is

the complex conjugation acting on F 
E 

.

e

k-k k-k
Proof : Observe that ô(Sk)n F = (S k-k0), where Sk-k0 is the standard
2013201320132013 

E 
k-k

k-k o -dimensional sphere. As k-k 
0 

is even and non zero, SOis connected
and has an Euler-characteristic equal to 2. We may thus pick up a vector-field

k-k
v on S 

0 

having only two singularities each counting with an index 1. We

use v to set 6 in general position with respect to R :

k-k 
’ 

~

Let v be the tangent bundle to 6(S 0) and n be its normal bundle in

Let n D be the associated disk-bundle which we may think of as being
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a tubular neighbourhood of 6 (S ) in 8(S k) -
Let 6 be the tangent bundle to F along 6(S k).
We have :

k-k

(78) v%iq is the tangent bundle to R E along 6 (S 0).

We call 8~ the disk-bundle of 6 . This also may be thought as a tubular
~ k-k

neighbourhood of b(S °) in F .

e

Let :

(79) w be a function equal to 1 on the zero section of 6D and equal to

zéro outside 6D ’ . 
_

zero outside 8D. 
of and of This provides with orientationsWe pick up an orientation of S 

0 
and of S . This provides with orientations

We extend v to 8D’ 9 in a trivial way, i.e. v is valued in v and depends~ 
k-k

only on the base point in S o .

We consider the vector-field iwv which is therefore defined on 6 D 9 or

k-k 

else on a tubular neighbourhood of 6(S °) in F . It generates a local
e:

one parameter group (j) which is the identity outside 6D , as w is zero

there. We consider, &#x3E; for s&#x3E;0 , (6(S )) and we This
s s e:

corresponds to study, at an infinitesimal level, for which (x,y),
k-k

xE S 
0 

, y E 1 we have :

As v(x,y) belongs to vx , , isw(x,y)v(x,y) belongs to iv x and (80) imposes :

We are thus left with (xl’O) and (x~,0) where xl and x2 are the singularities
of v on S o . At those points, the tangent space at (f) (8(Sk)) is

(Id+is Dv (x. ,0) (x, ) $ (Id + is Dv is the diffe-
y J x. J x.

J J
rential of v in a local chart of F around x..

E J
As v is y-independent, Dv (x.,0)(n ) = 0 and the tangent space is :

y J X.J
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Therefore, the local index of the intersection with v in
x, x.
J J

ex, - v x. (B 11 x tij iv x. ae ir) is given by the sign of the déterminant of
J

the endomorphism Dv (x.,0) of v . This is exactly the index of v at x..
x j x. j

J
We thus have :

(83) ~s (s(Sk)) intersects R 
e 
with the same index at two points.

Thus :

(84) [ 5 ] . [R ]= t2 . (. is the intersection number).
e

Observe now that the Lefschetz number of T acting on is equal to

the Euler -characteristic of the fixed point set ; hence, this number is 2 and

necessarly :

Lemma 6 is there by proven.

We apply now lemma 6 to superlinear-type problems :

Let Q(zl,...,zk+1) be a polynomial provided by a superlinear-type problem,
with X IR la n Ek . .

Consider :

(86) Q1(zl,...,zk+1) - Q(zl,...,zk+1) - E &#x3E; 0 small ; Q homogeneous

2m
of degree 2m ; Q(z 1 ...,z k+l 
We have :

Lemma 7 : The critical points of Q 1(z 1 ...,z k+l ) are such that
2013201320132013 .. _ _ _ 

i i 
. 

k+i 
_

Furthermore, after having possibly perturbed a, the following holds :
The real positive critical values of Q1 are, for any E &#x3E; 0 , equal to

_2m-1 2m/2m-l
’ 201320132013201320132013i /o-_i where b is any real critical value of q strictly2m 

(2m(a-b) ’

less than a . ..
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Lastly, if (al,...,ak) is a real non degenerate critical point of q , of

Morse index k , with critical value b  a, the corresponding real critical

. 

0 

E: 1 
l/2m-l 1 

.

p oint of QI. ,6), 0 = (2013 b-a 1 ) 1/2m-1 , has a Morse index equal
i 1 k 2m b-a

to k +1 .
0

Proof of lemma 7 : The first part of lemma 7, about the critical points of

is straightforward . The critical values of Q1 are thus equal to

1-2m 
h 

. 

f .2 EZk+l where zk+l satisfies :

and b is any critical value of q . Clearly, given these critical values,

whichare in finite number (if not, perturb slightly q), we may perturb if

necessary a, so that (88) has only solutions which are not real if b is

not real. The statement about the real positive critical values of Q1 in
lemma 7 follows.

We consider now a real non degenerate critical point of q (al,...,ak), of

Morse index ko , il and critical value b  a . Around (al,...,ak), q may be read,
k 

2 k 0 
1 k

in a local chart ’ hence Ql rea ds :

k +1 Jk 1 J ’

o 0

As b  a, the Morse index of Ql 1 at is ko+1 . The proof of

lemma 7 is thereby complete.

We then have :

Lemma 8 : Let bo be the largest real critical value of q less than a

(b  a). Assume that q has at the value b a real critical point
oo -

(al,...,ak) of Morse index k , with k-k odd, k-k &#x3E; 3 . Assume furthermore
i k o o o

that we are in the situation when lemma 7 applies. Then 2e, is a boundary in

; and 2e = with lôl such that T* (1 ôl) = (-1) lôl .
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Proof of lemma 8 : By lemma 7, the real positive critical values of

where b is a real critical value of Q less than a. The largest one

is : ·

Clearly, for E small enough, we have :

By lemma 7, we also know that Q1 has, at the value c£ ’ a real critical

point of index ko+1 .
The assumption of lemma 8 imply that k-(ko+1) is even, larger than 2.

We may then apply lemma 6 :

We choose y &#x3E; 0 , small enough. Introducing :

.......

(93) à a tubular neighbourhood of F 
c +y 

in F 
c +y 

invariant under the(93) a tubular nei g hbourhood of F fTR k+1 in F invariant under the
e e

complex conjugation T . 3X is its boundary.

We derive from lemma 6 the existence of a cycle [ô] in F c + y 
intersecting

£

a connected component of the real part of F with an intersection numberEY
equal to 2 and such that T * ([à]) = (-1)k[ô] , This means that 2ê 1 = §([ô]),
when êl ! is a sphere in the normal bundle in to the real part of it

- 

c e y
at a point of the connected component we are considering; and where § is

the connecting homomorphism :

Thus, lemma 8 is proven with instead of X .
c e y

In order to prove the same result on X , we prove that there exists a

diffeomorphism :

such that
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The existence of such a diffeomorphism implies immediately the result on X .

The existence of ~ is proven in two steps.

First, we introduce :

Considering then the differential equation :

one can prove local and global existence on for initial data in

Fc + . Local existence follows from the Cauchy-Lipschitz existence theorem
EY 

k+1 aQl 1 2

for any (z19... ez k+l ) such that Z 1 is non zero. This holds on a
1 1 

.=1 1 oZ .i=l J

flow-line (for s 0) starting at a point in as Q1 remains realc ye

lower bounded by on such a flow-line (zl (s),...,zk+l (s) ) . In fact,

we have :

k+1 1 aQl 2

Global existence follows from the fact that Z tends to +00
, i1 

+°

k+l 
2 

i=i i

with Z izi1 as can be easily checked, using also the fact that Q
j=1 J 

g Q

is non singular, homogeneous.

Calling n(s,.) the flow generated this is a diffeomorphism

between and FI ’ which commutes to complex conjugation.
c e y

The second step consists in showing that F and X an also diffeomorphic

through a diffeomorphism commuting to complex conjugation.
For this, we introduce the differential equations
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Observe that on a flow-line we have :

Local existence for initial data in Fl again follows from the Cauchy-

’.ipschitz theorem. As Q(z (s) ) - (s-s)zk+l (s) remains then

equal to 1 and as,by lemma 7, the real positive critical values of
1- ,

the Cauchy-Lipschitz theorem for sE [0,£]. Global existence for s E [0,C]
thus holds if the trajectories do not go to infinity during this time ;

k+! 1 a 2
which again holds because k+l / (Q"(6:"s)z 2 tends to +00 uniformly.1 

k+! 1 
2 

with s when Z Iz./2 tends to + 00 . The flow of this differential equation
j=l J

É (S ;) , taken at time s = c. (t)(e,.) is the desired diffeomorphism. The

proof of lemma 8 is thereby complete.

(1) As may be checked through the proof of theorem 3, Theorem 3 is a

particular case of a more general theorem which states that the total

dimension of the 712 -homology of FixT is equal to (see in parti-

cular (33)).
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