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Some mathematical problems in inverse potential scattering.

ANDERS MELIN

Department of Mathematics
University of Lund

We shall consider the Schrôdinger operator -~ + v(x) in Rn when n =
3, 5, .... We shall work with real-valued potentials in the class 11. This is defined
by the inequalities

The notation Ilvll will be used for différent semi-norms in 11.
Remark. By making changes of scales we find that Hy is unitarily equivalent to

where vt (x) = t2 v(tx). The semi-norms with lai = n - 2 are not changed
then, and we let denote the sum of such semi-norms. We shall say that
v is small if this number is small. If v is small, then Hv is conjugated to H~o by
an operator which is an isomorphism in LP when 1  p  oo , and there are no
bound states then. This result will follow from our constructions of intertwining
operators.

Intertwining operators.
Most of the ideas behind the construction of intertwining operators can be found

in Faddeev’s papers (Z-3~, where he introduced direction-dependent Green’s func-
tions. Since we are able to give explicit formulas for these functions, it will be

possible for us to obtain precise information about the intertwining operators.
This will allow us to generalize to higher dimensions the approach to inverse scat-
tering that we developed in Melin [4] .
A continuous linear transformation A : Cô (R" ) - D’ (Rn ) is called an inter-

twining operator (between Hv and Ho ) if Hv A = We shall always identify
such operators with their distribution kernels , and the operator equation above
can then be written as a differential equation

In order to describe the properties of these operators we introduce the space M of
locally integrable functions U(x, y) on R’ x R" such that

Then M is a Banach algebra under the composition

Every U E .M defines a linear operator U : when 1  p  oo, and
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THEOREM 1. Assume that v is small (not necessarily real-valued ). Then there
exists an intertwining operator A = I + U with 11 U 11.4  1. Hv is then conjugated
to Ho by an operator which is an isomorphism in any LP with 1  p  oo.

The distribution A = is constructed by successive approximations,i.e.

In order to solve the equation to the right one makes use of special fundamental
solutions Ee for the ultra-hyperbolic operator. One defines UN as 
where (v UN ) (x, y) = v (x) UN (x, y) .
THEOREM 2. There is a unique fundamental solution Ee for Llx - Ay when
8 E such that

We shall now give some estimates for the UN = from which it follows in

particular that the series (4) is always convergent in the distribution sense at least.

THEOREM 3. There is a continuous function c(À) on R+ such that c(À) --&#x3E; 0 as

and
1 , M

Remark . The set

is a Banach-algebra which operates on

COROLLARY 4. Hv is conjugated to Ho by an isomorphism in when À is

large an d 1  p  oo . 

We can say much more about the UN . It is convenient to introduce the following
definition.

DEFINITION 5. Ne is the set of all U E M which satisfy the following conditions.

(i) ~y - x, 0) &#x3E; 0 in the support of U;
(ii) The repeated commutators of U with are in N ;
(iii) U satisfies the following conditions at oo

By carefully estimating the U~ we can prove the following result.
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THEOREM 6. Assume that v E v . Then there is a continuous family

and a continuous family Re (x, y) with all derivatives in x Rn ) so that

Moreover, e I + .Me . The RB are of finite rank and vanish identically if v is
sm aII.

Remark. The Ae have properties similar to elliptic pseudo-differential opera-
tors of order 0, and the kemel of becomes more and more smooth as N tends
to oo. The Uo will have a small spectral radius in ,M. Using the polar decomposi-
tion of AB it will then be possible for us to construct a unitary operator T E I + .M
so that

where K is a finite sum of tensor products f 0 f , and all derivatives of f are in
~1.

The scattering matrix.
In this section we assume that v is real-valued. The scattering matrix can

be expressed in terms of the operators AB in Theorem 6. This is true at least in
the case of a small potential.

THEOREM 7. Assume that v is small. Then the scattering matrix can be identi-
fied with the function

We shall give a heuristic motivation for this. Consider an initial state u with
û supported outside the origin and near the ray defined by 8. Then the wave

u(t) = to infinity in the direction of -8 as t -&#x3E; -oo, and it follows
from the definition of Ne that Ao u(t) is close to u(t) , when t is close to -oo. But
Ae u (t) == by the intertwining property, so we obtain an approximation
for W_ u by Ae u. A strict proof involves a partition of unity w.r.t. the frequency
variables and gives us formulas for the wave operators

and then also for the scattering operator S = W§ W_ .
In the case of a large potential the presence of bound states causes some prob-

lems. However , the construction of the intertwining operators shows that we
can always define A~ (1- x(eD)) where X is some cut-off function with compact
support and e is small. The conclusion of Theorem 7 is then still true if we just
restrict the map (8) to the set where the energy lçl2 = lt?12 is large. Since we
know that Ae - I E .M, we can also easily conclude from this result that v can be
recovered from S.
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Trace formulas and the miracle. 
1

We start with some general remarks. To a real-valued potential v E 1) we have
associated distributions such as Ae and S, Qe - A; AB. The objects in the
first category are intertwining operators between H. and while the objects
in the second category commute with Ho. This means that they solve the ultra-
hyperbolic equation when they are identified with their distribution kernels. The
distributions we consider hàve their leading singularities concentrated near the
diagonal in Rn x Rn , and we shall see that all relevant information is sitting in
these singularities. For the case of simplicity we assume here that the potential is
small in order to have some objects globally defined.

It is natural to blow up the singularities around the diagonal. We therefore
consider the map

This map induces a map between distributions

It is easy to see that 1* is surjective , and r = 0 in the support of any distribution
in its kernel.

DEFINITION 8. We shall say that B E D’ (Rn X Rn ) is a 8-admissible kernel if
B = ~y* b, where b h as th e form

Here Y~ are the Heaviside functions on the positive and negative half-lines, and
we require the functions b± to be continuous in r &#x3E; 0 and smooth in the other
variables.

If B is 8-admissible then we use the notation tr B for the function b(x, o, w) .
(Note that B (x, y) _ ~ x - gives tr B = c onst ant.)
THEOREM 9. Assume that Bi and B2 are 0-admissible kernels which are properly
supported. Then B, o B2 is also 8-admissible and tr(Bi vanishes.

It is easy to see from the explicit formulas for the UN = UN,e in (4) , that Ae - I
is 9-admissible and

Since

an application of Theorem 9 shows that

This gives us the following result.
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THEOREM 10. If Qe = Aé Ae and v is small, then

PROOF: The theorem follows from (11) and the formula

Remark. Assume that v is small and 0 E sn -1. Then we can write the

scattering matrix as a product N+ N , where N+ and N_ are upper and lower
triangular w.r.t. the ordering of the sphere induced by 8. Moreover, Qe can be
easily computed from N+ N+ then.
Remark. In the coordinates the fundamental solution takes the form

where

This gives the right formula also in the case when n = 1. Thus we may hope to
obtain more analogies with the one-dimensional situation by using the blow up by
"1. We note also that the fundamental solution is independent of r when expressed
in the new coordinates

We shall finish this section by discussing the "miracle", which was discovered
by R.G. Newton (see Newton [ 6-7 ] and also Cheney ~1~ ). We write AB = I + Ue
and introduce the functions

Here F denotes the Fourier transform and we identify operators with their distri-
bution kernels. We also introduce the functions

r

The expressions for the wave operators in terms of the AB show that Tl:!: and 
are related by the following formula

r

By using the more or less explicit formulas for the UN,o one can prove that

where a± and b± are smooth functions. The "miracle" can then be expressed in
the following way.
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THEOREM 11. Assume that v E 1) is small. Then has the form (14~ with a:f:
an d b-z smooth , and

where cn is a positive constant which depends on n only.

This result is obtained from the explicit formula for Ue as a sum of the UN .
Since the UN become smoother when N increases it is clear that the left-hand side
of (15) is only depending on a finite number of the UN . The theorem has therefore
a sense also in the case of large potentials.
Remark. If v is small, then W~ are unitary, and W+ S = W_ . We may write

this equation as

where S is the scattering matrix, and the second arguments in W~ 1* are described
in terms of polar coordinates k, 0. Using (13) and taking the Fourier transform
w.r.t. k on (16) we find that the scattering matrix gives us an integral equation
of Marchenko type for rl±. The arguments are the same as in Cheney [1,Theorem
6.3].
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