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Introduction. In order to explain the motivation of this

study, we begin with the following simple example. Let LO be

a differential operator in R3 of the form

L. =02+ ¢x?p? + D2, p_ = -id
g = D; (L v : e R
where ¢ € C”, #(0) = 0, ¢<x) > 0 ( « = 0 ), ¢<(x) = ¢(-z) and ¢
is non-decreasing in [0,»). It was proved by Kusuoka-Strook [K-S]
that LO is hypelliptic in R3 if and only if ¢ satisfies

lim jgtllog ¢z = 0 .

z - 0
When ¢ = exp\~1/lmlo), o > ¢, this condition means o¢ < 7.

This result was obtained by using the Malliavin calculus, which is
a theory of stochastic differential equations.

The main motivation of this study is to prove the above result
by means of the microlocal analysis in the theory of partial
differential equations. In the next section we give a new sufficient

condition for hypoellipticity and discuss its necessity.

1. Main results

Let p = p<x,Dx) be a differential operator of order m > 1

with coefficients in Cm(Rz), that 1is,

viz,D,) = > a (x)D? , a_{x) € Cm(Rn),
Z loT<m @ T o z
where for multi-index ¢ = (al""’an)’ lot] = o too ot ¥
o, o, 4
= S o oo an o= =4 .
DZ Dn DJ Lax
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We say that P is hypoelliptic ( C*-hypoeliliptic ) in R" if
for any u € 2° (R") and for any open set @ of R" , Pu € C”(Q
implies u € C*”¢(Q). Let A and log A be pseudodifferential
operators with symbols <&> and 1log <>, respectively, where <> =
(1+|§|2)Z/2. We write pi%i(m,ﬁ) = agbgp(x,&) for multi-indices o
and 8. We set uuns = IASul for real g and u € Cg(Rn). where

9
.l denotes the usual L“ norm.

Theorem 1. Assume that for any € > 0 and any compact set K

co
{

of R"™ there exists a constant C8 K such that for any u € CO K>

(1) I (log A )ull < ghPul + Ce ghull
+B8 | ,¢0) N
(2) S i(log A ) 'XtBlIplaryy < gllPull + C_ glull
(at) _ (o), . 2 a s . n
where P(B) = D(B)<$.Dw). Then P 1is hypoetlliptic in R.

Furthermore we have

(3) WF Pv = WF v for any v € 2 (R™).

Corollary 1. Let P be a differential operator of second order

with C*-coefficients, that is,

= L {x)D D, + {x)D, *+ clx)
P j?k a,; (m)DJDk § iba x)DJ el(x)
We assume that

ajk and bj are reail valued,

(%)

S aj(T)E 8, 2 0 for all (z,8) € R2m

1f for any € > 0 and any compact set K of R"™ the estimate
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.

(4) I (log A)2ull < glPull + o glul, u € COlK)

Q

holds with a constant C8 K then we have (3)

Corollary 2. Let P be the same as in Corollary 1.

l1f for any € > 0 and any compact set K of R" the estimate
. 9
(5) I(log Mull® < & RecPu,w + C glull®, u € CHeK)

holds with a constant C8 K then we have (3).
Proof of Corotiaries. The estimate (2) with m = 1 follows from
() and (4) ( cf. Oleinik-Radkevich [O-R}). (4) easily follows by

substituting (log A)u into (5). Q.E.D.

We discuss the necessity of hypoellipticity for second order

differential operators given in Corollary 1. The estimate (4) is
not always necessary for hypoellipticity. We have a counter example
given by FediY [Fdl, 4, = D2 + exp(-1/1z19)D% , o > 0. Indeed, this

example does not satisfy (4) when o > 7, while it is proved by [Fd]
that 40 is hypoelliptic for any o > 0. The fact that dO with o
> 7 does not satisfy (4) is easily seen if we consider an

eigenvalue problem
2 2 . o 2
{ (-d“/dx” + exp(-l/lxl " n")v = v

. wi-1) = w1 = 0, v e CTvi-1,1)),

The min-max principle shows that the minimal eigenvalue Ao(n)

satisfies
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0 < agin) s Cpclog InZ7  ( see [My] ),

which contradicts the estimate (4).
However, the estimate (4) is necessary to be hypoelliptic

for a class of differential operators, ( for example, Di + AO ).

The result concerning the necessity of (4) can be discussed for

some class of operators of higher order. Let m be even positive

integer and let PO be a differential operator of the form

(6) P, = Dg + 4z, D) in RthZ )

where d(w,Dw) is a differential operator of order =m with (¢%-
coefficients. We assume that A(z,Dw) is formally self-adjoint
in Rg and bounded from below, that is, there exists a real ¢y
. . 2 ® , n.
bd Ve
such that (d(z, D ou,u) 2 cylul for u € Cy(R,).

Theorem 2. Let PO be the above operator. Assume that PO ig
hypoelliptic in Rthg. Then for any z, € Rg there exisitis a

neighborhood w of z, such that for any € > 0 the estimate

(7) 1(log A )™ %un? < g RecPyu,uw + ceuunz. u € C3(R xw)

holds with a constant C_. Here A , of course, denotes <Dt'Dw> =

€
ipe 2,172
13Dy 1912,

Remark 1. When m = 2 the estimate (4) follows from (7). In
fact, for any compact set K of RthZ y, let K- be the projection
of K to RZ and take the partition of unity J w?(m) = 1 over K’.

.u) 1is majorated by a constant times of uuuz, we

J

have (7) for u € CZ(Rth‘), which implies (5) and hence (4).

Since Re([PO.¢j]u»¢

Remark 2. Almost the same result as Theorem 2 was obtained
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independently by [Hsl]. Proof of Theorem 2 is performed by the

similar method as in Metivier [Me], who studied nonanalytic

hypoellipticity for operators of the same form as (6) ( cf. [B-G] ).

As an application of Theorems we shall consider the hypo-

ellipticity of degenerate elliptic opertors of the following form;

(8) P, = 3%+ p2% + gDt im R,

where 0 = 7,2,... and g{¢(z) 1is € function such that g¢z) > 0

( 2 # 0 ) and g¢(0) = 0. When @ > 2 we assume that for any g4 > (0

dJ

(9) IDig(m)l < ng<w)z_ in a neighborhood of « = 0 ,

where 8 is a number satisfying
2
(10) 0 < & < 1/720° .

It is clear that a function exp(~1/|zlo). o > (0, satisfies (9)
for any & > (. We refer [Mll about an example of g which does not

gsatisfy (9) for any ¢ < 8§ < 1/2.

Proposition 1. Let P] be the above operator. 1f gz’
satisfies

(11) lim Jzlllog g(x)| = 0
z = 0

then P, is hypoelliptic in R3. Assume in addition that
xg () =2 0, that is, g i8 monotone in R+ and R , respectively.

Then the condition (11) is also necessary for P] to be hypoelliptic

in R3.

The result of Kusuoka-Strook stated in Introduction is the case

2 = 1 of Proposition 1.
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Unfortunately, when 2 = 2 we can not apply directly Theorem 1

to the proof of Proposition 1 , because it is quite hard to check the

hypothesis (2) for Pj , more precisely, to show
1(log A) D% 7un < enp ull + C_ lull, u € Co(K)
z Z S'K ’ 0\ e

So we need the following amelioration of Theorem 1 under an

additional assumption.

Theorem 3. Assume that the principal symbol of pm(m,ﬁ) of P

satisfies
(12) pn(x.ﬁ) # 0 for z° = 0, where « = (z°,z2").

Then the conclusion (3 of Theorem 1 still holds even if the

estimate (2) is replaced by

la+B8 | {a)
(13) 0<Ia§Bl<m"(log A P(B)“"—IBI
oa={0, a”)
< ghPull + Ce,K"u" , u € CO(K).

The hypoelliptic operator do given by [Fd] with ¢ 2 7 1is
not covered by Corollary 2 ( nor 1 ) as stated in the preceding. To
cover this exceptional example we give another criterion of

hypoellipticity.

Theorem 4. Assume that the princival symbol of P satisfies
(12). I1f for any compact set K of R™ there exist a Ko > 0 and a

constant CK such that
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‘o)
(14) Nun + S e un.
O<la+Blsm (B kg IBI
oa=+J,a"”)
< Cpd MPull + lull_ ), u € Co (K,

then we have (3.

2. Proofs

Concerning of the detail proofs of Theorem 1,3,4 and Theorem 2
we refer [MG] ( or [M5] ) and [M5], respectively. Here we only
explain the idea.

First, we review the following:

Y, 2
dk = D; + x“kbg , analytic hypoetlliptic, see [Ma],
2 2 2k 2 , . .
L, = DY + D& + "D y nonanalytic hypoelliptic,
k ¢ z Y
see |B-G] when k = 7, see [Me] when k = 2.

Here the definition of analytic hypoellipticity is that of c”-

hypoellipticity with replaced c”iQ) by real analytic in Q

It was stated above that

2 o
A, = DI+ exp(—z/lzt°)D§ , o >0, C-hypoelliptic.
5 E . -3
LO = DZ + Dé + exp(—Z/IxIOJD; , o217, non C -hypoelliptic.

The above comparaison between analiticity and (C"-smootheness

leads us to the following characterization of Cg—functions:

u e C: — ue€é, IAKul < = sor any k > 0O

— u € & , llexp: k log A Jull < o for any k > 0
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— ueé , Wklog A)Nun <w , vw=012..,
for any k > 0.
If we note that CB -functions are functions satisfying Cauchy’s

estimate with Dm replaced by k log A for any k > 0 then the

proof of Theorem 1 is not particular in the usual microlocal analysis.
( More precisely, the proof of Theorem 1 is performed by using the
microlocalization arguments as in [HrZ].) As stated in the remark
after Theorem 2, the proof of Theorem 2 is easily done if log A

replaces A in the arguments of Métivier [Me].

We remark that, essentially following the above idea, Hoshiro
[Hszl has recently given another proof of Theorem 1, by using the
microlocal energy method studied in Mizohata [Mi].

We mention the sketch of the proof of Proposition 1.

For the brevity, we only consider the case of 4 =7 and g{x)
= exp(wi/lwlo), o > 0. The necessity of (11) is proved by Theorem 2.

In fact, if (11) does not hold, then (7) contradicts the estimation

of the minimal eigenvalue AO(n) considered in the paragragh after

Corollary 2. For the proof of the sufficiency, we use Corollary 2.

Note that

(15) Re(P u,u) = nntun2 + noxuuz + ¢ exp(-z/|m|°>05u,u).

If %(t,z,n> is the Fourier transform of u € CZ with respect to vy

and if supp ¥ ¢ { Izl < (loglnl)_j/o } = QO then it follows from
Poincaré’s inequality that

2
(16) (log 1an)?7% %% < cup Yu? .

On the region Qg = { lzl =2 (log lnl)—j/a }, the symbol o (P, of PZ

satisfies
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2 2
o(P]) > tTt° + E° + |nl.

Since Pj is semi-elliptic on QS , the estimate (16) together with
(15) gives (5). By the similar way, we can prove the hypoellipticity
of an operator Di + Di + ig(m)Dy if g¢x) satisfies (11) and gz’
>0 (xz =0 ).

We remark that Theorem 1 is also applicable to more

degenerate elliptic operators of second order. For example, let P,

be a differential operator of the form

P, = Di + zZQDi + f{y)Di . Q0= 1,23 ...,

where f(y) = g(y)sinz(l/lyl) and g(y) is €~ function such that

gy > 0 ¢ y = (0 » and g(j)(O) = 0 for any gj. Then P, is

hypoelliptic if g satisfies

(17) Lim 1917722 |10g gey)| = 0

0 , ( see [M7] ).
y-—b

In order to check (5) for P,, we need a smaller cutting of the
cotangent space T*(Rz) than the one Qy vV Qg in the preceding

paragragh.

From Hormander’s classical theorem in [Hrll and its sharp

version given in [R-S] and [F-P] we have
(18) Re (Pyu, w) + llull”
2 2 2 S nd X 2
3 anuu + Dyuu + (f(y)Dzu.uJ + lull
> czu;nyal/‘ﬂ*l’ﬁuz st L uecs,

where ﬁ({,g) denote the Fourier transform of wu¢.,z). Set M = |g|
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and Vy) = f(y)MZ. Then, in view of (18), for the proof of (5) it

gsuffices to show that for any integer k > 0 there exists a Mk > 0

such that for a ¢ > 0
(19) ulbyl’/‘“*”uuz VY U W

= ock log w21, u e chr!)

if M > ”k .

To derive this we need the following theorem ( cf. Theorem B

in [M7] ). Let 2 be 0 < x £1. We consider a symbol of the form
alx, &) = |€l21 + V(z) , = € R",

where V{(z) is a non-negative measurable function. Following

Fefferman-Phong [F-P], [Ff], we consider a set ¢ of boxes
_ - n _ _ -7
(20) B ={ (x,E) € R ; lxj wojl < 8/2 , IEJ EOJI <8 /2 }

for all (wO,EO) € RZn and all & > (. Clearly, the volume of B €

g is equal to 7 .
Theorem 5. Assume that there exists a e > 0 such that
for any B € €
(21) m( { (x,8) e B; a¢z,8) 2R >0 } ) 2¢ ,
where m(.) denotes Lebeague measure. Then we have
A ,2 . . 2
(22) MID 1 7ull™ + Vizou,uw) 2 e’Rlull® ,

u € Cg(Rn) ’

P

where ¢’ > 0 depends onty on ¢ and n.
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2/4(9+1)

2 9
Set a¢y,n’ = Inl + f(y)M° and R = (k log M)°. Then,

it is not difficult to check (21) by using (17). So, by Theorem 5
we obtain (19) and hence (5) for P2.

Finally, we remark that we can prove the hypoellipticity of P2
by Theorem 5 and Corollary 2 even if f(y)> degenerates in a Cantor

gset with measure 0 ( see [M7]).
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