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littr-oductioii. In order to explain the motivation of this

study, ’ we begin with the following simple example. Let La be ’

a differential operator of the form

where 0 E ~‘~r ~ ; f~ ~1 __ 0, -(x) &#x3E; Û ~ ~C ~-‘ t.i ,~ , 0 ~x) = and

is non-decreasing in It was proved by Kusuoka-Strook [K-S]

that L, is hypelliptic in R 3 if and only if 0 satisfies

When 0 = exp(-1/Ixlo), a &#x3E; 0, this condition means a  1.

This result was obtained by using the Malliavin calculus, which is

a theory of st,ochastic differential equations.

The main motivation of this study is to prove the above result

by means of the microlocal analysis in the theory of partial

differential equations. In the next section we give a new sufficient

condition for hypoellipticity and discuss its necessity.

l. Main results

Let P be a differential operator of order m &#x3E; 1

with coefficients in that is,
x
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We say that P is hypoettiptic ( in Rn if

for any U E ~’ ~Rn) and for any open set n of Rn , Pu E 

implies u E e°° ~~~ , Let II and log A be pseudodifferential

operators with symbols t&#x3E; and log 4&#x3E;, respectively, where t&#x3E; =

( 1+ I ~ I ~ ~ ~~L. We write p~ , aa ~x, ~~ - for multi-indices a

and 8. We set lluil = II Asu II for real s and u E C°° R , @ where
9 0

9
Il.11 denotes the usual L2 norm.

Theorem 1. Assume that for an.y s &#x3E; 0 and any compact sPt K

of Rn there constant. C6,K such that for any u E 
St/B 0

uhere P ( a~ _ p ~ . a.~ ~ x, D ,, , Then P is in Rn.

Furthermore me have

Coro t t ary 1. Let P be a differential operator of second order

with that is,

We assume that

l~ for any s &#x3E; 0 and any compact set K of R n the estinate
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with a constant Cs,K then us have l 3? ,

Corollary 2. Let P be the sage as in Coroltary 1.

I ,f &#x3E; 0 and any compact se t K of Rn t he estinate

constant t hen ue have ! 3, ,

of Corollaries. The estimate ( 2 ) with a = 1 follows f rom

~ and (4) ( cf. Oleinik-Radkevich [0-R]). (4) easily follows by

substituting (log A)u into (5). Q.E.D.

We discuss the necessity of hypoellipticity for second order

differential operators given in Corollary 1. The estimate (4) is

not always necessary for hypoellipticity. We have a counter example

given by FediY [Fdl, A z D2 + a &#x3E; Û, Indeed, this
’ 

iJ x y

example does not satisfy (4) when o z 1, while it is proved by [Fd]

t,hat 4 Ù is hypoelliptic for any a &#x3E; 0. The fact that A 0 with a

~ 1 does not satisfy (4) is easily seen if we consider an

eigenvalue problem

The min-max principle shows that the minimal eigenvalue d
satisfies
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which contradicts the estimate (4).

However, the estimate (4) is necessary to be hypoelliptic

for a class of differential operators, ( for example, D 2 + $4 ).

The result concerning the necessity of (4) can be discussed for

some class of operators of higher order. Let a be even positive

integer and let P 0 be a differential operator of the form

where is a differential operator of order with C
ac

coef f icients . We assume that J(x,D) is f ormally self-adjointx

in Rn and bounded from below, that is, there exists a real c
x 0

such that x, D ;? u, u z COuuU2 for 
x 0 0 x

Theorem 2. Let P0 be the above operator. Assume that Po £9

/ïypoeHtptic in Then for any x 0 E R there exists a

neighborhood w of acD such that for any 8 &#x3E; 0 the estiaate

i 7 ~ u E CO.(Rtx(O)

holds uith a constants Here A , of course, deno tes 

Remark 1. When a = 2 the estimate (4) follows from (7). In

fact, for any compact set K of let K’ be the projectiont x

of K to Rn and take the partition of unity § qÎxJ&#x3E; = 1 over K*,
x j

Since is majorated by a constant times of we

have (7) for u e which implies (5) and hence (4).

Remark 2. Almost the same result as Theorem 2 was obtained
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independently by [Hs 11. Proof of Theorem 2 is performed by the

similar method as in Métivier [Me], who studied nonanalytic

hypoellipticity for operators of the same form as (6) ( cf. [B-G] ).

As an application of Theorems we shall consider the hypo-

ellipticity of degenerate elliptic opertors of the following form;

where q = ~2,... and is C°° function such that g~x&#x3E; &#x3E; 0

x Q , and g Q? .- 0. When Q Z ? we assume that for any J &#x3E; 0

(9) 1 :!r. C -g XI) 1 ô’ -Ln a ne.ighborhood of x = 0 ,(9) in a neighborhood o.f x -- 0 ,
x i

where s is a number satisfying

It is clear that a function exp(-1/Ixlo), a &#x3E; 0, satisfies (9)

for any a &#x3E; 0. We refer [M ] about an example of g which does not

satisfy (9) for any ~~  ô  1/2.

Proposition 1. Let Pi be the above operator. I,f 

satisfies

( 11 ) lim 1 - (3
x -~ 0

then. P is hypoelliptie in R 3 Assume in addition that

Û, t ha t is, 9 is monotone in R* and R-, respectively.

Therc the condition (11) is also neeessary for P1 to be hypoeiliptie

in R~. 

The result of Kusuoka-Strook stated in Introduction is the case

~ = 1 of Proposition 1.
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Unfortunately, when Q Z 2 we can not apply directly Theorem 1

to the proof of Proposition 1 , y because it is quite hard to check the

hypothesis (2) for more precisely, to show

So we need the following amelioration of Theorem 1 under an

additional assumption.

Theorem 3. Assume that the princi-pat symbol of 

satisfies

Then the conclusion 3) of Theoren 1 still holds even if the

estinate (2) is reptaced by

The hypoelliptic operator À0 given by [Fd] with o ~ 1 is

not covered by Corollary 2 ( nor 1 ) as stated in the preceding. To

cover this exceptional example we give another criterion of

hypoellipticity.

Theorem 4. Assume that the principaL symbot of P satisfies

(12). If for any compact set K of Rn there exist a K &#x3E; 0 and a

constant CK such that
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t hen we have (3).

2. Proofs

Concerning of the detail proofs of Theorem 1,3,4 and Theorem 2

we refer [M 61 ( or [M5] ) and [M5], respectively. Here we only

explain the idea.

First,, we review the following:

analytic hypoetliptic, see [Mal,

nonanatytic hypoelliptie,

Here the definition of analytic hypoellipticity is that of C0153-
t H tt tt

hypoellipticity with replaced 
" 

by reaL analytic in t .

It was stated above that

The above comparaison between analiticity and C"-smootheness

leads us to the following characterization of Cfunctions:
0 

°
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If we note that C0 -functions are functions satisfying Cauchy’s
estimate with Dx replaced by k log A for any k &#x3E; 0 then the

proof of Theorem 1 is not particular in the usual microlocal analysis.

( More precisely, the proof of Theorem 1 is performed by using the

microlocalization arguments as in [Hr2].) As stated in the remark

after Theorem 2, the proof of Theorem 2 is easily done if log A

replaces A in the arguments of Métivier [Me].

We remark that, essentially following the above idea, Hoshiro

[Hs2] has recently given another proof of Theorem 1, by using the

microlocal energy method studied in Mizohata [Mi].

We mention the sketch of the proof of Proposition 1.

For the brevity, we only consider the case of 9 = 1 and g(x)

= a &#x3E; 0. The necessity of (11) is proved by Theorem 2.

In fact, if (11) does not hold, then (7) contradicts the estimation

of the minimal eigenvalue ~~(~) considered in the paragragh after
Corollary 2. For the proof of the sufficiency, we use Corollary 2.

Note that

If is the Fourier transform of u e C with respect to y0

and if supp U c 1 5 n0then it follows from
Poincaré’s inequality that

On the region n 0 = { (log , the symbol a P j &#x3E; of P0
satisfies
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Since p is semi-elliptic on 0. , the estimate (16) together with

(15) gives (5). By the similar way, we can prove the hypoellipticity

of an operator D2 + if satisf ies ( 11 ) t x y

&#x3E; 0 ( x 0 J. .

We remark that Theorem 1 is aiso applicable to more

degenerate elliptic operators of second order. For example, let p
-

be a differential operator of the form

where ,~ ~y; - and g ~y~ is C°° function such that

g(y) &#x3E; 0 ( y - c~ ’ and g~~’~ r0~ - 0 for any j. Then P., is

hypoelliptic if g satisfies

In order to check (5) for p21 we need a smaller cutting of the
&#x3E;

cotangent space T *(R n) than the one Q u c in the precedingx 0 0

paragragh.

From Hârmander’s classical theorem in [Hr11 and its sharp

version given in [R-S] and [F-P] we have

where ~(:,~) denote the Fourier transform of ~~, , ~~ , Set = I~I
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and V(y) = Then, in view of ( 18 ~ , for the proof of ( 6 ) it

suffices to show that for any integer k &#x3E; 0 there exists a Mk &#x3E; 0

such that for a c &#x3E; 0

To derive this we need the following theorem ( cf. Theorem B

in [M7] ). Let x be 0  ~ ~ 1. We consider a symbol of the form

where V(x) is a non-negative measurable function. Following

Fefferman-Phong [F-P], [Ffl, we consider a set 9 of boxes

for all and 0. Clearly, the volume of B e

9 is equal to 1.

Theorem 5. Assume that there a c &#x3E; 0 such that

for arcy B E 9

uhere m(.) denotes Lebeague neasure. Then, use have

uhere a’ &#x3E; 0 depends onty on c and n.
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Set a(y,OJ = and R = (k log I~~ ‘. Then,

it is not difficult to check (21) by using (17). So, by Theorem 5

we obtain (19) and hence (5) for P?

Finally, we remark that we can prove the hypoellipticity of P2
L

by Theorem 5 and Corollary 2 even if degenerates in a Cantor

set with measure 0 ( see 
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