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On the singularities of harmonic maps

from a domain in IR3 into S2

by

J.M. Coron.

I report here on a joint work with H. Brézis and E. Lieb about

the singularities of minimizing harmonie maps from a domain in

into the Euclidean sphere in m3.

Part A

I. Introduction.

2 32222
Let 8 = {x = E m 1 lx,2 = 

~ be a bounded regular open set in m3 and let g be a

smooth (i.e. C 2,a ) map from 3Q into S 2 Let

For u in E we define

minimizing map if
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For (p in E we define the regular set of W by

R(~) = {x E ~~ ~ is c~ in a neighborhood of x in ~}

and the singular set of (p by

R. Schoen and K. Uhlenbeck [1] [1.4] have proved (see also

M. Giaquinta - E. Giusti [6] and J. Jost - M. Meier [10] for

related problems) that, if u is a minimizing map,then S(u)c:2 and

is finite. For a point x0 in S(u) , let E be a small sphere

centered at x 0 u restricted to E is a continuous map from

E into S2 and so has a degree d in 2Z ; · clearly d is

independant of E provided that the radius of E is small

enough; this number d will be called the degree of the

singularity x 0 * Our first result is

Theorem 1 [4]

Let u be a minimizing map and x0 be in S(u) . Then the

degree of the singularity x0 is +1 or -1 and more precisely,

near xo 1

(2) I where R is a rotation.

A sketch of a proof of Theorem 1 will be given in section II.
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Remark 2

a. R. Hardt - D. Kinderlehrer - F.H. Lin [9] had proved that

there exists some constant which does not depend on g and on

~ which bounds the absolute value of the degree of any

singularity of any minimizing map.

b. The significance of ( 2 ) , following R. Schoen - K. Uhlenbeck

[13] and L. Simon [15] is (where we have taken x 0 = 0)

and

where B = {x E IR3 1 Ixl I  1 } and D 
p 

is the partial dif-

ferentiation in spherical coordinates of m3 with respect to

p = 1 x 1 . In fact, R. Gulliver - B. White [7] have improved (4):

they prove that there exists some strictly positive

(which does not depend on u ) and a constant c such that

c. R. Cohen et. al. [4] have observed numerically that if
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where - 82 is the usual stereographic projection - see

(15) - , and if g = u on then u is not a minimizing

map.

For our next result we take

We prove in [4]

Theorem 3

x is a minimizer.

Ixl

Two proofs of Theorem 3 will be given in section III,

Remark 4.

It is in fact possible to prove (see [4]) that is the
lxl

unique minimizing map. Uniqueness follows also from Theorem 3

and A. Baldes [1]

II. Sketch of a proof of Theorem 1

We are going to prove

Theorem 5

. / x B .. , . ,

If S = B and ls a minimizer then either

g - const. or there exists a rotation R such that

g (x) - ± Rx for any x in S2 . . Clearly Theorem 1 follows from

Theorem 5 and [13].
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Sketch of a proof of Theorem 5.

We take 2 = B , u(x) = g x and we assume that uWe take Q = B , u(x) = g (II) and we assume that u

is a minimizer; in particular u satisfies the Euler - Lagrange

equation

hence g is a harmonic map from S2 into S 2 .

Let d be the degree of the continuous map g: : S2 - S 2

Since every harmonic map from S2 into S2 of degree 0 is a

constant map (see e.g. [12]) we have

(6) d = 0 ~ g is a constant map.

We are going to prove

(7) d = ± 1 ~ there exists a rotation R such that

and

(8) 2 is impossible.

Theorem 5 f ol lows f rom ( 6 ) , ( 7 ) and ( 8 ) .

Proof of (7)

Let a be a point in 82 ¡let E be in (0, 1) ) and let

Ta: 2B{al - S2 be defined by the condition that x belongs toE

the segment [Ea,Ta x] . Note that
E:
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We define

It is easy to check that ua is in H1 and it follows from (9)
E:

that

Hence ua E E and so we have
E

A straightforward computation leads to

where V T is the tangential gradient.

Since (12) is true for any a in S2 and any c in 

we have

Finally using the description of harmonic maps from S2 into

s2 it follows (see [ 4 ] ) from (14) that if Idl I = 1 then there

exists a rotation P such that gx = ± Rx .

Remark 6.

For any d in 2Z there are harmonic maps g from S2 into

S2 of degree d which satisfy (14); hence we cannot use the



XII-7

same testing functions ua to prove (8). In fact in order to
E

prove (8) we are going to split the singularity of degree d

(if d 2 2) into d singularities of degree +1 . .

Proof of (8)

Let P : OE - S2 be the stereographic projection defined

by

where z = x+iy . Let f : C 2013&#x3E; 0152 be defined by f = P- 1ogop ;
let E be in (o , ce) ; and let a : [ E,1 ] - [0,00) be any

smooth function such that a ( E ) = 1 , a ( 1 ) = 0 , and a ( t) &#x3E; 0

for t * 1 . We define now u : 2013 S2 b Y
e

Note that u E = g on ~~~ , and the singular set of uE is

So if f has d distinct zeros, then uE has d singularities.

Since u is a minimizer we have

Note that
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A straightforward computation (see [3]) leads to

Hence using ( 17 ) , ( 18 ) and ( 19 ) we have

We now take e - 0 and after choosing the "best" a (i.e. the

a which minimizes the right hand side of (20) when e = 0 ) we

get

Unfortunately if, for example, f(z) = z 2 then (21) is true;

this in fact quite natural since z2 has a double zero and so

(see (16)) uE has only one singularity. The singularity of u

has not been split. In order to avoid this difficulty we remark

that if R is a rotation and if u R = R o u, g R = R o g then,

clearly, uR is a minimizer for the boundary condition gR ;
hence we have also (see (21))
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We now average (22) over all rotations and after some computations

(see [4]) we get

hence the assertion (8)

III. Proof s of Theorem 3

We give in this section two proofs of Theorem 3.

1. First proof of Theorem 3

This proof relies on Theorem 1 and [13] - [14]. We consider

Q = B and a smooth map g: : 3Q -~ S 2 of degree one (one can take,

for example, g(x) = x) . Let u be a minimizer; since the degree

of g is not zero, S(u) cannot be emty. Let x 0 be in S(u); by

[ 14 ] x follows from Theorem 1 that there exists a rotation
0 ’ 

/ xX-X 0 ,

R such that u(x) ± R lx-x01) near x ; but using [13] we
/ ° 

2
know that the homogeneous tangent S ,

/ x B .,. , ,

x - _ R -j2013r) , has to be a minimizer with respect to its own
boundary conditions and since E is invarient under isometry we

have Theorem 3.

2. Second proof of Theorem 3.

This proof is more direct. Here Q is the unit ball B and

g is the identity. Let
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,

F. Bethuel - X. Zheng [1] have proved that E is dense in E

Hence, in order to prove Theorem 3 we have only to prove

(Note that / x B 87) .(Note that E 
-,2013r 

= 8ïr) . 

+ 1 3
For u in E we de fi ne a vector field D in L1 3 byFor u in E we define avector field D in L (2) by

The usefulness of D comes from the following two facts

(see [ 4] ) :

where in (26) { an / 1 ~ n S p} = S (u~ , kn is the degree of

u at a and Sa is the Dirac mass at the point a . Let
n a n

- n

8 : Q be such that 8 (x) - 8 (y) ) S ) 1 x-y and let u be

1

in E ; it follows from (25) and (26) that

- -)-

But D.v = 1 on 3Q since u = g on 3Q and so we have

now use
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Lemma 7.

Let (M,d) be a compact metric space, let p be a probability
p

measure on M and let v = E k 6 where a1y ... ,a 
p 

are

n=1 ~ n ’ P

p points of M , the ki belong to 2Z and satisfy

We apply this Lemma to M = ~ with the usual distance.

It then follows from (27) that

but the right hand side of (27) is 2 ~ lxldcf(x) i.e. 8~ . .
3Q

Hence Theorem 3.

We finally sketch a proof of Lemma 7. By approximation we

1 q
may assume sb.. Let pl = qp and let

q j=1 b 3 
"
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and finally let N. = bi for j E [ 1 ,q] .
J i

We have

It follows from Kantorovich’s theorem [11] that

where M is the set of positive measure on M x M such that

TI1m= Y1 and ~~’2 if we dénote by TI1 (resp. TI2) the

projection on the first factor (resp. second factor) of M x M .

Note that

M is a convex set. Let M’ be the set of extremal points of

M ; we have

The set M’ is described by Birkhoff’s theorem [3]:

where Z is the set of permutations of {1, ... ,~} . -

From ( 2 9 ) , ( 3 0 ) and ( 31 ) we have
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Using a theorem in Graph Theory due to Y.O. Hamidoune - M.

Las Vergnas [8] we know that for any a in E 91 there exists

iO in [1,1] such that (see [4]):

Lemma 7 follows from (32) and (33).

Remark

In [4] there is also an alternative argument to the use

of [8].
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