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1. ORBITS OF THE FLOW.

Let E be a space of variations (either a Hilbert space or a manifold

modelled on a Hilbert space for sake of simplicity) and let :

be a functional which we will assume to be for sake of simplicity also.

Let :

(2) ( , ) be the scalar product on E

and

(3) 8f(x) be the gradient of f at x in E.

We are concerned with finding a solution to the equation :

For we introduce the level sets of the functional f at a :

(sub-level set)

(upper-level set)

(level surface) .

We also consider the differential equation :

Let :

(7) x(s,x ) be the solution of (6).
o

We then have the following very simple principle to solve (4) :
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Proposition 1 : Let ba. Assume f b is not retract by deformation of f a

(e.g. H~(f a ~f b ;G)~0 for a certain coefficient group G ; and H* is a homology

theory ; or (f ,f ;G) 0 ; TT*is homotopy ...) Then :
either (4) has a solution x with b~f(x)~a

or there exists an x 
0 

such that such that
o o

(b) the closure of the set {x(s,x ) ; is non compact .
o

There are several directions where one can make the content of Proposition 1

more precise and in the same time more general :

lst-precision : In case x exists, the basic assumption which is used to

study the situation near x is that 3f is Fredholm at x. Then, if x is a non

degenerate critical point of f, one computes the Morse index of f at x.

We then have :

Assume the injection is not a homotopy equivalence, then x cannot

contribute to the difference of topology between fb and fa if the Morse index

of f at x is infinite.

Thus a critical point x is relevant in the calculus of variations in the

large if it comes with some properness assumption (Fredholm structure) and

if it has a finite Morse index.

In case the Fredholm structure is available, there is a way to drop the

assumption of non degeneracy (see Marino and Prodi [1]). Otherwise, very few

is known.

2nd-precision : In the second case of the alternative provided by Propo-
sition 1, we have :

(9) fr cannot be included in a compact set for T E [0,-ko[.
0 0

We then have a sequence (sn) or either (x(sn,xo)) such that :
n n o
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Classically, in the calculus of variations, there is an assumption, called

the (C) condition, introduced by Palais and Smale forbidding (10). The content

of this condition is the following :

(11) for any sequence (x) such that bf(x )a and af (xn) - 0, there
n n n

is a convergent subsequence.

This condition forbids the second case in Proposition 1 and thus allows to

find solutions to (4) via the study of the difference of topology in the

level sets.

However the condition (C) forbids more tant (8)-(9). Indeed, in (8)-(9), we

deal with sequences which lie on the same orbit of the flow ; while with the

(C) condition, we deal with arbitrary sequences (both of them,satisfying

b  f (xn) ~ a ; 3f(x n )-~0).

Thus, to do variational calculus, we need :

1 either a weaker condition than (C) or (11) : namely, we can impose
on the xn’s to lie on the same deformation line,

2 or to study the difference of topology induced in the level sets

by theses orbits of the flow which satisfy (8)-(9).

The first case 1 is just an improvement of condition (C).

The second case 20 is concerned with getting rid of any condition of this
type, by considering the flow as a dynamical system, having possibly singu-
larities "at infinity".
This goal of getting rid of the condition (C) has been set by S. Smale in

his book : "Mathematics of the time" [2].

It is far from being concretly achieved in all variational problems of
interest.

3rd recision : The invariants,

The orbits of the flow satisfying (8)-(9) are of course relevant to the
flow itself , i.e. to the differential equation (6).

On the other hand, the variational calculus is concerned with the function f ,
in fact, equation (4) means that it is impossible to decrease strictly with
respect to f a whole neighbourhood in E of the critical point x.

From this correct interpretation of the calculus of variations, we may
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replace (6) by any other differential equation corresponding to a (pseudo)-

gradient for f (in particular consider another scalar product on E) or even

more consider any decreasing (with respect to f), globally defined deformation

of the level sets.

Thus we see immediately that there is some ambiguity, if we do not make

some further specification in case 2 .
We discuss here this ambiguity :

1 - First of all, there is an intrinsic notion relevant to f and not 3f

(or either deformation). This notion is the difference of topology of the

level sets when crossing the critical level, say c.

i.e. if this critical level c is isolated, which we will assume for sake of

simplicity, , then for E&#x3E;O small enough, the homotopy type of the space

f C+E/ f C-E is an invariant.

2 - There is a second invariant which is of dynamical type.

In dynamical systems, an invariant set for a flow comes with a stable and

unstable manifold, at least when it is non degenerate (or either hyperbolic),
which holds generically (otherwise some perturbative argument is necessary

using some kind of Fredholm structure ; these days, even degenerate cases

are studied, see for instance the work of Yomdin in algebraic geometry and

Cappell-Weinberger in algebraic topology).
What is invariant in a hyperbolic situation is not the stable and unstable

manifolds but rather their dimension and the qualitative behaviour of the

flow on the boundary of an isolating block in the sense of C.C. Conley [3].

To give the simplest picture of this invariant, the best example is

the situation nearby a non degenerate critical point of a function f on a

finite dimensional manifold. We then have, by Morse lemma, the following
local situation (see M. Hirsch [4], for instance).

dynamics of the

flow and of any

pseudo-gradient

hyperbolic flow
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0 is the critical

level.

behaviour of the

level sets.

In (12), we can retain the behaviour of the flow on the boundary of the box :

C.C Conley [3] has introduced invariants related to this Morse decomposition,

namely the homology of what comes in and what comes out.

C.C. Conley introduced these invariants for a general hyperbolic flow. In

such a genral situation, these invariants do not determine the invariant

set and its hyperbolic structure (i.e. stable and unstable manifolds) inside

the isolating blowk. However, when the flow is pseudo-gradient and the critical

(or rest) point is isolated (without assumption of degeneracy), these inva-

riants completely determine the nature of the critical point inside.

This notion of Morse decomposition and isolating block can be extended

to the situation of (8)-(9), giving rise to Conley invariants related to

this situation, which provide with a second set of invariants, more precise
than the difference of topology in the level sets.

Qualitatively, we draw the following picture of the flow, under (8)-(9).
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The analysis of the flow on sections provides with this second set of invariants.

4th recision : ____________ ----- ----

With this phenomenon of the failure of the (C)-condition, there is something

important which enters into account :

Consider the case of a usual non degenerate critical point for a functional f~
then there is no way one can decrease with respect to the functional a whole

neighbourhood of this critical point.
With a flow line going to~, the situation is different :

Indeed, consider a point x s on this flow line : then there is no problem to

decrease with respect to the functional a whole neighbourhood to x .
s

But, in fact, there is more : namely, one can decrease in most cases where

we studied critical points at infinity a whole neighbourhood of the flow line ;
in particular, the flow line itself.

What really matters is how "large" this neighbourhood can be taken, with

respect to the structure of the flow in section and also (it is somewhat

the same thing) how "large" it is with respect to the "end of the orbit".

There is a real ambiguity here, of the same kind than one encounters

with the ends of analytic functions. What is defined is a way to arrive

to them (when they are "accessible") ; not really themsleves ; i.e. the

way to arrive to them defines them. This is why the global nature of the
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deformation, in particular the flow when necessary, is an important tool.

(For a discussion on the ends and the accessibility, see Moise,

"Geometric topology in dimension 2 and 3".)

5th recision : 

Assume there are natural ends for the flow lying in some manifold V.

This manifold might be given by the sequences (x ) violating the (C)-condition.
n

This manifold depends then only on the notion of pseudo-gradient, not on the

precise pseudo-gradient chosen.

Consider then a bundle F over V with fiber a space of parameters ,E=A 1 
xH

where A I is, for sake of simplicity, finite dimensional and H is a neighbourhood
of zero in a Hilbert space (or so).

Let (A 1 x H)x be the fiber at x.
Assume now there is a way to represent the functions x of E such that

laf(x) 1 E: ; in F. Calling this representation R, we have a

functional defined on F ; namely f(Rx).

Assume also that over any point u in V and for any al Elll, we can minimize
this functional for the variations in H.

We then have a functional on r, ’ a bundle over V, with fiber ; and we are

reduced to a variational problem of finite dimensional type, which depends

on the representation R.

In the simplest case, ’ h - (1R+)p , p E N and when e -~ 0 , p -~ (0 , ... , 0)
in (]R ) p . . 

’

It is then natural to look at the functional f(Rx) over V in a neighbourhood
of (0,...,0) in the fiber. Then V might be thought as the space of variations

at infinity (not the critical set at infinity) ; and the behaviour of the

functional in a neighbourhood of r will select,under good conditions,

the part of V which is critical "at infinity".
This relates this kind of variational problems to the study of the singula-
rities. This is the way C.H. Taubes proceeds [13] ; and he proves that

the singularities do not interfere with certain homology or homotopy classes.

After these five precisions, we introduce the notion of critical point
at infinity (see Abbas Bahri [5]).

Definition 1 : A critical point at infinity is an orbit of a (pseudo)-gradient
flow for the functional f, starting at a point xo for s &#x3E; 0, such that

E lR , whose closure in E is non compact.

Thus a critical point at infinity is related to a (pseudo)-gradient.
If it is of hyperbolic type, or if we are dealing with a hyperbolic set of
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critical points at infinity, there are invariants (in particular Conley

invariants) related to such a critical point at infinity.

Finally, in case there is an appropriate extension of the variational

problem nearby infinity (i.e. the bundle F) with a normal form of f, then

there might exist a space of representation for these critical points at

infinity.
In any case, the notion of critical point at infinity is not intrinsic

to the variational problem.

2. AN ABSTRACT DEFORMATION LEMMA.

Assume we know that, with b  a,

(16) fb is not retract by deformation of fa

but we do not know the condition (C) to hold on [b,a].
There is then a way to analyze the possible defect of compactness, which

amounts to a deformation lemma we present now. ,

Assume also we have a function g : E-~ R such that if

(17) (xn) is a sequence such that bf(x n )a ; and (g(xn) ) is

bounded, there is a convergent subsequence.

Thus, if a sequence (x ) violates the (C)-condition, g(x ) goes to +00.
n n

In general, there are many possible choices of g and the best one is in

some sense the function g (if it exists) which measures how a sequence vio-

lating the (C)-condition leaves the compact sets of E (examples will be pro-
vided later on).

Let :

We assume
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Let

Z has the property that (Z,3g) &#x3E;0 ; and

Let e&#x3E;0 be given and let :

and let now :

Z £ is locally Lipschitz.

Qualitatively, -Z is obtained from -3f by adding -Z which decreases f and g
e -

whenever w is small.

We point out here that, in general, we may choose g such that :

C uniform for any x such that b ~f(x)~ a or even, in some situations (see

section 3 below)

Thus !3f(x)! I and tp(x) goes to zero implies that 3f(x) goes at zero.

In this way, -Z c (x) is a vector-field which controls the sequences violating
the condition (C).

We then consider the differential equation :
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and we have :

Proposition 2 : If for b a, f b is not retract by deformation of f a then,

for each e&#x3E;0, there exists x such that :
e

and

either a f (x£:) = 0 ; ~ if not a homotopy equivalence, x has a finite

Morse index if 3f is Fredholm at x£ and x e is note degenerate ;

or Z (x ) = 0 ; cp(x )  E. In this case, there are three relevant notions
e e

which are :

a - the set Z(x) = 0 around x . Generically, this is a line transverse

to f ;

b - if it is a line transverse to f, the index of Z at x in section
E:

to the level surface at x ;
E:

c - in the simple case when this line goes to +o (i.e. on

this line) the unstable manifold of this line of zeros of Z.

This is summed up in the following drawing :

Is there a convergence process ?

In case such a line has a natural end, we end up with a critical point
at infinity as defined in the previous section. We illustrate this by the

following example (section 3).
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3. PSEUDO-ORBITS OF CONTACT FORMS.

The framework is the following :
We consider a contact form a on a three dimensional compact, orientable

manifold M. The assumption n = 3 is not essential here. There is a version of

what we present in dimension 2p+l. For sake of simplicity, we restrict

ourselves to this case.

Let E be the Reeb vector-field of a, i.e. ~ is defined by the equations

Let v be a vector-field in the kernel of a which we assume to be nowhere

vanishing. The existence of such a v means that the bundle in planes a = 0

over M is trivial ; which we will assume.

Let Q be the one parameter group generated by v, DO is differential
and let 6s be the associated map in the differential forms of M.

Let x o be a point of M and x s =6 s (x ) o be the generating point of the

v-orbit through x .
o

Let :

(29) e 1 (o) and e2(o) be two vectors tangent to M at xo such that :

Let

3.1 

The following proposition expresses along the v-orbits the fact that a

is a contact form :

Proposition 3 : w(s) rotates in the direct sense of the frame (el(s),e2(s»
when s increases. 

This is expressed in the following picture :
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Let then :

,

(32) be the angle in the moving frame which measures

the rotation of w(s) from 0 to s.

we def ine :

Definition 1 : We call coincidence points of x 
o 

(relatively to a and v) along
the v-orbit through xo those points xs such 

At these points x, we have :
s

Definition 2 : We call conjugate point of x (relatively to a and v) along
the v-orbit through xo a coindence point such that :

Definition 3 : We say that a turns well along v if any point x0 of M has
a coincidence point distinct from itself. Let then y : M-+ R be the function

which associates at a point x o of M the i-th time such that x 
s 

is
i 0 s

a coincidence point of x o (i6S) . Let f1 : M -* M be the diffeomorphism of M
which sends x on x ..We the colinearity coefficient

o i, _ 

i o

As can be noticed, the notion of conjugate point is a delicate notion :
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not all points of M have conjugate points distinct from themselves.

At the contrary, these points live on a hypersurface of M.

If we draw the segment of v-orbit between x and a coincidence point :
o 1

we have a natural differential equation which comes with this piece : namely
the one satisfied by a from xo into ; or either the one satisfied by

w(s) in a transported frame (el(s),e2(s»).

It has the intrinsic form :

thus

with a(x )  0.
s

Hence the pendulum equation, with a periodic solution if and only of we have

a conjugate point.

’3.b M.- - _2L

Let
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We leave aside here the question of $ not being a contact form (which is treated

in [5]) and we study the case :

(39) S n ds &#x3E; 0 with respect to a A da .

We then normalize v by multiplication by a factor X so that :

Let then :

(41)

(42)

We have :

Proposition 4 : C is a submanifold of H (S ,M). If a (hence P) turns well

alon v then the in’ection of C in H1 S1 M is a weak homoto e uivalence.along v, then the injection of C 
S 

in H M) ) is a weak homotopy equivalence.

Consider now a curve of C , x. Its tangent vector x can be split on
p

(v) and we have :

a = positive constant

We then consider the functional :

As one might expect, from the first glance, the functional f does not control

at all the v-component of x.

We introduce :

Some further analysis (see [5 j) shows that f does not satisfy the

(C) -condition and in f act, on a sequence (x ), with x = a ~ + b v, the
n n n n

boundedness of the functional and the fact that just tells us

that Jt b /(f~ 1 b~)~0, , at best. 
o n u n 
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So : ·

1 - f doest not satisfy (C) ;

2 - 3f has no Fredholm structure (see [5]) ;

3 - there is a difference of topology in the level sets ; but it is by

far too heavy to be due only to the critical points of f which are

the periodic orbits of E (see also [5]).

Yet,such an ill posed variational problem has a precise meaning, of interest.

For this, consider for instance the case :

(46) M = PR 3 ; 
· a = Xa0 where a 0 is the standard contact form on PR 3

considered as the cotangent sphere bundle over S .

Let

(47) p : : P IR 3 - S2 be the f ibration ; and v be the vector-field of the
S 1-f ibers .

The variational problem (44) on c corresponds then to the geodesic problem
2 . 2 .

on S2 (to any metric on S , there is a corresponding X in (46)), in the

space of immersed curves.

Solving this problem is important for the issue of counting the minimal

number of geodesics on a surface E (then M is the S1-fiber bundle over E

provided by the sphere cotangent bundle).
R. Hamilton pointed out that the normal curvature f low for the projected

curve from C along p is a pseudo-gradient for such a variational problem ;
it is as well a pseudo-gradient for the area enclosed by such curves.

We thus see that this variational problem has a common pseudo-gradient
with other important variational problems.
One should note here that this implies that all these problems have related

critical points at infinity.
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3.c [Note aux

Comptes-Rendus, Abbas Bahri, July 1984].

(48) is a geometrical description of the critical points at infinity.

To understand qualitatively what is going on, we have to apply a convergence

process to these curves :

1 - the conjugate points
For E~ 0, the curve x approximating this object (on the deformation line)

forms a small bubble in section to v.

i.e. if one projects a neighbourhood of the piece rather tangent to v on x

on a section to v, one finds :

or more bubbles
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These are thus points where the tangent vector to xc makes very rapidly
an integer number of rotations, possibly growing when e+0 by the following

process :

However the resulting movement is very particular, i.e. the bubble as

depolyed along v will go from one point to a conjugate of this point.

Thus, generically, these bubble build up at precise locations in M.

At these precise locations, the singularity has a very precise and restricted

normal form given by a periodic solution to (37).

To see the phenomenon, we could draw v-orbits passing through each

point x of M and distinguish on these orbits the coincidence points to x :

We thus have a S-structure along M related to a along v. For some distin-

guished points, we have conjugate points.

xo E hypersurface of M

Assume x corresponds to time sI on the v-orbit starting at x . We have :p o
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and we can compute in this situation the second variation of a i.e.

This gives rise to a quadratic form on tangent vectors to M at x , q ;o o

and in the same time to a quadratic form on tangent vectors to M at

xs1= x , q 1.s1 p 1°

Thus, these conjugate points come out with :

1 - a precise location ;

2 - a precise normal form to the singularity ;
3 - an integer (the rotation of a from x ° to xs = x ) ;

20132013201320132013 o 1 P
4 - two quadratic forms qo and ql ; ;
5 - a way to approach them by curves which project on local sections

on bubbles.

Remark : Each time integers areencountered in"geometry",the word "quantization"

commonly appears, with an evident abuse of this concept, which is due to Kostant

and Souriau (see Guillemin-Sternberg : "Geometric Asymptotics" for a scientific

presentation of the concept of quantization).

2 - the ~-pieces
These are pieces where the curve is tangent to the Reeb vector-field ;

thus the curve is tangent to (in this S-structure we introduced) until

it hits a point admitting a conjugate point.

Then, under certain conditions stated in [5], it jumps to the conjugate point.

(55) The ~-pieces come also with a quadratic form q3 defined by the
second variation of f along them with fixed ends. This quadratic
form is related to a rotation of v along the ~-piece (see [5]).

The Reeb vector-field E is, in the case of the cotangent unit sphere

bundle of a Riemannian manifold E, such that its periodic orbits project on

geodesics of E. In that case, there is no other conjugate point for a point

Xo than itself and the Dirac masses describe a complete circle S over
a given point in E in ST*E.

In other simple, but more complicated cases, this is what happens :

Take the case of S3 fibering over S2 with the Hopf fibration
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Consider a=Xao9 X apositivefunction on S3 and a the standard contact formo p 
0

of S3. Let v be the vector-field of the fibers over S2. In this case, the

Reeb vector-field E, when describing a fiber S 1 over a point x 
0 

of S2 ’
describes in the tangent plane to S at xo the following : 

o

2
We thus have two choices of length on S2, hence two notions of geodesics.
Then, (48) projects as :

The location of the corners is very precise and there is a Morse index

related to qo9 ql9 q3-

This is a general picture of what happens.

[A ctean -6.tatement o these has been made Note aux 

Rendu,s de l’ Aeadémie des Scienca de paJt,Í-6, July 1984.

A tomy Paul H. 

f . J. M. Canan, A. ChencineA, V. Bennequin, R. Na&#x26;azimhan.

A a manuzcaipt Å-6 avaitabte now 

a ~ 

We reproduce here the theorem we announced in [6] :

Assume :

a turns well along v ;

(H2) v has a periodic orbit ,

(H3) for one vector-field vl, non singular and colinear to v, we have :

3 k &#x3E; 0 such that 
1 

where 81 s is the one-parameterI s s

group of v 1 ;

(H4) 3 k2 and k3 &#x3E; 0 such that V i 6 S , we have :
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3 p &#x3E; 0 such that for any x E M, the set

is finite.

Then, under these hypotheses which can be considerably weakened (see [5]),
we have :

Theorem I : The critical points at infinity of the variational problem are

continuous and closed curves made up with pieces tangent to ~ and

tangent to v. is conjugate to x2i+l. If the Betti

numbers of the loop space are unbounded, there are unfinitely many of these

curves.

Furthermore, if n is the number of v-pieces of one of these curves, we have :

where a is the length of the curve along E and C is a universal constant.

As pointed out in [5] (see also [17] for application of the method developped
in [5] to Yamabe type equations), the defect of compactness reveals, when

analyzed along deformation lines, new geometrical structures which govern in

fact the variational problem.

In turn, this variational problem somewhat expresses them through the dynamics
of the flow and the difference of topology in the level sets.

This link is the important point which defines a critical point at infinity.
Out of it, one either looses the variations, hence the reason why the phenomenon

exists ; or the ends of the orbits, hence the way these variations interact at

infinity and are governed by these interactions.

4. THE NIRENBERG PROBLEM ; THE EQUATION’ an open bounded set.

4. a 

We are concerned with studying the equations :
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In case problem (59) is the Nirenberg’s problem : namely finding the

functions K such that they are scalar curvature of a metric conformal to the

standard one on S .

In case Qcc S n we will here mainly look at the case K(x) is a positive

constant.

We wish to point out here that Lee and Jerison [7] and Chern and Hamilton

[8] showed that there was a Yamabe type equation on the contact form situation.

The paper by Chern and Hamilton appeared in the publication of the Berkeley
MSRI in October 1984, shortly after the proof the Yamabe conjecture by
R. Schoen (summer 1984). This shows some connection, in time and in content

between the two fields.

4 . b The f unct ional and the flow.

Let

The of J over E+ is (the parenthesis around o is meant to cover the

case 
·

where

under Dirichlet boundary conditions if QddS

We consider the differential equation :

To simplify the notations, we will rather work in aen, transforming the

problem by stereographic projection.
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Then :

where c is such that :
o

The variational problem does not satisfy the condition (C).

The sequences which violate this condition have been analyzed by J. Sacks

and K. Uhlenbeck [9] for the harmonic map problem in dimension 2.

Their intuition has been extended to the Yamabe (type) equations throughout
the work of Y.T. Siu and S.T. Yau [11], P.L. Lions [10], C.H. Taubes [13],
M. Struwe [18] , H. Br6zis and J.M. Coron [12].

We have the following proposition :

Proposition 3 : Let (u ) be a sequence in ¿+ such that (J(un)) is bounded
n - n

- u -

and There exists u&#x3E; 0, aJ( u ) = 0 if u 0, p E N , such that for
n -

u

an extracted subsequence again denoted (un), we have :

where
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From the point of view of critical points at infinity, the sets V(p,s) when e+0 are

the candidates (or potential) critical points at infinity. These are not

critical points at infinity.

In fact the critical points at infinity are analyzed in the following.
Consider the problems :

Minimize

Minimize

where

is the orthogonal projection of 6. onto H I(Q)P J 1 n

Proposition 4 : For any p, there exists Eo &#x3E;0 such that for any u in

v(P,E0), problems (72)-(73) have a unique solution up to permutation.

We consider now the differential equation (65) with a starting point

We want to analyze the behaviour of the solution u(s,uo).
As long as the solution remains in V(p,E 0), we have well defined quantities :

In order for a gradient line to build up a critical point at infinity, we
must have À. 1 (s) -+- -+00 ¥ i.
In fact, the crucial behaviour is the one of the X i(s).
It turns out that such a behaviour has a normal form, which we give now in the

case K(x) is constant, -ff compact.

For the general case, see A. Bahri [14].

We first introduce the regular part of the Green’s function of the

Laplacian on S~ .
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We then define the matrix :

where

We have :

Theorem 2 : For any 6&#x3E;0, there exists so &#x3E; 0 and s 0 &#x3E; 0 such that if

u( s) E V(p , e ) for 0ss and for 0  s  s , then for all
o o i 0

I&#x3E; s such that u(s)remains in V(p,E ) for s E [o,s], we have :
o 0
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This is the dynamical behaviour of the flow nearby the singularities (i.e.
in the V(p,s)’s ; 

Let then :

Observe that the matrix M(xi...,.,xp) is related to the equationI p

(6 
x. 

= Dirac mass at x.. 1 Not be confounded with 6, i of (67).)
i

The energy interactions, as we prove it, are governed by the matrix M and p.

In partiuclar, for two points x. and x., this interaction increases along
i J

grad p. This gradient is related to the vector fields D. =grad(x,x.) andi 1

D . = grad (x, x . ) which satisf y :
J J

If there is no boundary, then Di and D. are
i J

Increasing amounts, by symmetry arguments, to move the points along

Di(x.) - D.(xi) which is directed by x. -x.. Hence the interaction lies along
i J J i i J

the geodesic from x. to x..
i J

Otherwise, one has to take the boundary into account ; hence the distance of

the points xi and x. to the boundary (see [14]).
i J

We have :



XXI.27

Theorem 3 : If an orbit of the flow defines a critical point at infinity

then, lim p(x.(s),...,x (s))~0. Conversely, if p(x,(s),...,x (s)) remainsp p

larger than 6&#x3E;0 for a certain time interval, then the orbit will define

a critical point at infinity and lim p(x(s),...,x (s)) will be strictlyp

positive on such an orbit.

Then the points xi(s) converge in Q and

Note here that p is a "natural" extension of J at infinity (see [14]) ; its

critical points in p (x) &#x3E; 0} providing somewhat "more critical" points

at infinity than the orbits of the flow. This is the full variational problem

at infinity ; or either the variational problem with singularities.

On the other hand, we derive local expansions of J which we will give
in the general case.

Using (73), we write a function u of V(p,c) in the form :

and we have setting

Theorem 4
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where

and

and

The indexed (by K) quantities appear when K is non constant.

The proof of Theorem 2 is dynamical (see [14]).

The proof of Theorem 4 requires some computations (see [16]).

Theorem 4 is a kind of Morse lemma nearby infinity or more precisely the

"versal deployment" of the singularities in the sense of Rene Thom.

4.c The defect of_compactness : to olo ical invariants.4.c 

We illustrate this problem with K= 1 and Q compact.

Setting :

we give a theorem which provides the difference of topology when crossing

the energy level b ; i.e. for e&#x3E;0 small enough a description of :
P
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i.e. the contribution of the critical points at infinity in the difference of

topology at level b . For this, we need to introduce :
P

(87) a p the symmetric group.

We then have :

Theorem 5 : Assume that p has no critical point in ~x/p(x) = 0}. Then

Finally, we state an existence theorem in case K= 1, ~ is compact.

Let Q be connected, regular.

Theorem 6 : Assume the reduced ?ZZ-homology of Q is non zero, the equation

has a solution.

The proof of theorem 6 is not difficult, neither technical. It has been

outlined in [16]. The complete proof will appear in [15].
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