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(0) Introduction

In this talk, I should like to present a general framework

to study the Cauchy problem and the theory of Scattering for a

class of non linear evolution equations which occur in Physics.

The equations I have in mind are among others :

The non linear Schr6dinger (NLS) equation

aM

The non linear Klein Gordon (NLKG) equation

where T is a complex valued function defined in n + 1 dimensional

space time is the Laplace operator in

f 0 is a non linear function of,-,’ , a typical example being

and V is a real even function of space.

The general framework will also apply, at least as far as the

Cauchy problem is concerned, to the Yang Mills equations.and to

various systems of equations of the previous type coupled between

themselves or with otherwise linear equations such as the Maxwell

and Dirac equation, with reasonable (but in general non linear)

couplings. Rather than giving a list of equations and systems and

of the available results for them, I shall concentrate on the

abstract theory, and illustrate each of its stepswith the example

of the NLS equation and to a lesser extent of the NLKG equation.

The theory has reached roughly the same stage of developement

for these two equations as regards both the Cauchy problem and the
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theory of scattering. The case of the NLS equation is slightly more

difficult (although less complicated) than that of the NLKG equation,

essentially because there exists a larger wealth of results and

especially estimates for the corresponding free equation in the

latter than in the former case. Also the result for the NLS equation

are more recent and less well known. The Hartree equation can be

treated exactly in the same way as the NLS equation, with similar

results. Other equations are in a much less advanced stage of develop-

ment. Systems including the Dirac equation are plagued by the non

positivity of the energy, already at the stage of the Cauchy problem,

while systems involving the Maxwell and a fortiori the Yang Mills

equations exhibit long range effects which make the theory of scattering

much more difficult.

The general framework was originally developed by Segal E8] and

in a less general form by Browder [1] following earlier work by

J6rgens [5J on the NLKG equation. There is a vast amount of literature

on the NLKG equation. The main results concerning scattering were

obtained by Strauss j10 1 and Moravetz and Strauss C7] , following

earlier work of Segal, and with later contribution of several authors.

The corresponding results for the NLS equation were obtained in E3]

and E6] . The Cauchy problem for the Yang Mills equation was solved

locally in E9] and globally in E4] in dimensions 1+1 and 2+1

and in E2] in dimension 3+1 . There is no complete theory of

scattering for that case.
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(1) The Cauchy problem at finite times

The equations considered here can be written in general as

where u is a function from space time to a finite dimensional

vector space, K a linear differential operator which we assume for

simplicity to be time independent and f a non linear interaction term,

in general of lower degree than K in the space derivatives. For

instance, for the NLS equation, one can take u - ’, K = 1 and2

f(t,u) = - i f (W). For the NLKG equation, one can take u = ( ) ,
0 1 0 .. d"

K f (u) - f0 3 ) so that Y is simply dt as a conse-/B2013tT! U 0( ) a.u

quence of (1.1). The Cauchy problem consists in solving the equation

(1.1) with initial condition U(tor x) = u (x) for some to ELR and

some prescribed u0* It is convenient and traditional to split that

problem into two separate ones. The first problem is the local Cauchy

problem and consists in solving (1.1) in some small interval around t~.

The second problem is the global Cauchy problem and consists in

extending the solutions thereby obtained to all times. We shall

consider these two problems successively.

(l.a) The local Cauchy problem

A general abstract method for studying the Cauchy problem was

proposed by Segal in 1963 [ 8 1. It consists in recasting the Cauchy

problem in the form of an integral equation and solving that equation

by a fixed point method. For that purpose, one introduces the one

parameter group of operators U(t) = exp(tK) formally generated by

K (to be called henceforth the free evolution group) and rewrites

the Cauchy problems in the form
t
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One then looks for solutions of ( 1. 2 ) in the of

continuous function of the time t in some interval ICR to a suitable

Banach space X. For comp act I ~(I,X)is itself a Banach space with
norm

where denotes the norm in X. We denote by B (I, p) the ball

of radius p in (I,X) . If one can choose X in such a way that

(1) U(.) is a continuous one parameter group of bounded operators

in X, with

(2) f is a continuous function from R x X to X satisfying a

Lipschitz condition

for all ui E X, all t E I , , then one sees easily

that for and for I = Et 0 -T , t0 + Ta with T sufficiently

small (depending on u0), the operator leaves invariant a ball

in (6(I,X) containing the free term U(.-t0)u0 and is a contrac-
tion in that ball, so that the equation (1.2) has a unique solution

in B(I,p) by the contraction mapping principle, thereby providing a

solution of the local Cauchy problem. The method extends in a straight-

forward way to the case where U(.) is only a semi-group, or where

U(.) is replaced by a two parameter group or semi group of bounded

propagators U(t,s), corresponding to the case wherethe operator 
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is time dependent.

The theory just described applies to the equations mentioned

in the introduction for suitable choices of the space X. However,

it imposes restrictions on that choice that are both unnecessarily

strong and inconvenient for various purposes. This is especially

true for the NLS equation, as we shall see below. It is therefore

useful, and actually possible, to develop a more general formalism,

where we relax the assumption that the free group U(.) be bounded

in X. For that purpose, we assume that there exists a "large"space
/ 

Z (in practice one can often take Z that f be a conti-

nous map from LR x X to Z and U(.) a one parameter continuous group

in Z, so that the integrand U(t - ~)f(~,u(~)) in (1.2) is well defined

(in Z) for ~ ( I , X) and r in I. We then replace the separate

assumptions (1.4) and (1.5) on U and f by a joint assumption on the

pair(U,f). Since in addition we are interested in the integral in

(1.2) rather than in the integrand, we formulate this assumption on

the integral itself. There is however one complication coming from

the fact that U is no longer assumed to be bounded in X, namely the

fact that v e (I,X) no longer implies that the function

(t, s) -~ U(t-s)v(s) belongs to (,6- (~ x I,X) . We take that fact into

account by stating the basic assumption interms of integrals more

general than that occuring in (1.2), and formally defined by

It then turns out that the main results relative to the local Cauchy

problem can be derived from the following assumption on G.
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Assumption 1.1 . For any interval I, any t e R and any u 

the function   U ( t -r) f(~,u(~» is locally Bochner integrable

from I to X, and the function  si , s , t) -~ G ( &#x3E; is

continuous from I x I x R to X. For any bounded intervals I and J,

for any p &#x3E; 0, for any u 1 and u2 E G satisfies the following

Lipschitz condition

whereC(I,J,p) is separately non decreasing in I, J and p, and tends

to zero when I tends to zero for fixed J and p.

Note that the monotonicity of C(I,J,p) in each of its arguments

is quite natural, from the very nature of the estimate (1.7). The

purpose of introducing the interval J is to control the t.dependence

of G, which is not controlled otherwise since we no longer assume U

to be bounded in X. The assumption 1.1 is easily seen to be satisfied

under the separate assumptions made in Segal’s theory, and in particular

(1.7) follows easily from (1.4) and (1.5). The next level of generality,

which is sufficient to cover all the applications considered later,

is the situation where there exists in addition to X an auxiliary

Banach space X such that for each t 96 0 ~ U(t) is a bounded operator

from X to X, continuous in t for t ~ 0, and satisfying an estimate

for some function p continuous for t ~ 0 and integrable at zero,

and where f is a continuous function from (R x X to X satisfying a

Lipschitz condition
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The reasons for stating the assumption 1.1 in the form given

rather to assume the above separate properties on U and f are twofold.

On the one hand, that form might be actually weaker than the separate

assumptions on (U,f) in more complicated situations, and in any case

it is exactly what is needed for the local Cauchy problem. On the

other hand, it anticipates on the form of the assumption needed to

study the local problem at infinity, which is the basic step in the

theory of scattering.

Under the assumption 1.1, one derives by various arguments revolving

around the contraction mapping principle the basic results concerning the

the local Cauchy problem : existence of solutions in a small time interval,

uniqueness of solutions in an arbitrary interval and continuity of the

solutions with respect to the initial data in the neighborhood of a

given solution.

Proposition 1.1 Let the assumption 1.1 hold, let to e tR. assume

(for simplicity) that the interaction is source free, namely f (t, 0) - 0.

Then

(1) For any p &#x3E; 0, there exists T E T ( t~ , p) such that (with I 5

[ t0 - T, to + T ] ) for any u 0 EX such that U(.-t 0)uo E the

equation (1.2) has a unique solution in B(I , 2p).

(2) for any interval I ~ t 0 and any u 0 E X such that ’

the equation ( 1. 2 ) has at most one solution in  (I,X) .

(3) Let I and J be compact intervals, to E I, U 0E X such that

u a solution of ( 1. 2 ) . Then there exists
0 0 &#x3E;

1.l of (tor u ) such that for any in L , the

equation (1.2)with (t ,u ) replaced by has a unique solution

u’ in (6 (I,X), and that solution depends continuously on 

(The relevant topology is that induced by the topology of

~R for t0 and by the norm u . The relevant topology

on u is that induced by the norm Sup U ( . -s ) u ( s ) ~ I J).
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The basic problem one encounters when trying to apply the abstract

theory to a specific equation is of course to choose the space X. For that

purpose, it is useful to look ahead and anticipate on the treatment of

the global Cauchy problem. There,an essential role is played by the

conservation laws associated with the equation (1.1). The net effect of

these conservation laws is the existence of a space X2 such that any

solution with initial data in X2 is a priori controlled in X2. In gene-

ral, the dominant part of the conserved quantities comes from the free

part of the equation, and therefore is quadratic. As a consequence, in

general X2 is a Hilbert space. Furthermore, the free group U is in general

bounded in X2. x2 is the natural space where to look for global solutions,

and therefore also the natural candidate for X. Failure to choose X = X2
will be a source of difficulties at the stage of the global Cauchy problem.

In the subsequent applications we shall use mainly the usual Lq spaces

with norm . , (1 ~ q ~ 00) and the Sobolev space Wkq (k integer,

k z 0, 1 f q ~ defined by

where a = (all ... denotes a multiindex of space derivatives, and

Jul a1 + + a n.
We shall also use the notation H k for W k,2 Sobolev spaces satisfy

various embedding relations. In particular H c L for 2 s q :Ç 2n2 (n !! 3)
n-2

and H k c L 00 for k&#x3E;n/2.

Furthermore, is an algebra (for the pointwise operations) for

k &#x3E; n/2.

We now show how the abstract theory can be applied to the NLS equation.

The free group is U(t) = exp (itA) and satisfies the following twoL..

properties, the only ones to be used at this stage :
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. U(t) is unitary in H k for any 0.

. U(t) is bounded and strongly continuous in t from Lq to L q (more

generally from to where 2 ~ q ~ and for any such. q, q

denotes the dual exponent,,l/q + l/q = 1, with an estimate

with

Under suitable assumptions the space X2 suggested by the conservation

laws turns out to be H, resulting from the conservation of the L2 norm
and the energy. Unf ortunately, there does not seem to be any simple way to take

X = H1, except for n = 1, and we must make another choice for X. There is

a large amount of freedom in that choice. "Large" spaces (typically such

that X D H ) have the obvious advantage that one can handle a larger set

of initial data, while "small"spaces (typically such that X c H) provide
additional smoothness of the solutions. Additional differences will appear

at the stage of globalization. We give below for illustration three

examples where the assumption (1.1) is satisfied and for which the local

theory applies. For each of them, we indicate the choice of the space and

the relevant assumptions on the interaction f0.
Case 1 (small space) n arbitrary, X = Hk ’k -- n/2, f E cek+lwith fo(0)= 0 .

This case is covered by the theory in Segal’s original form. Note that

there is no restriction on the behaviour of f 0 at infinity, as is typical

of theories where X consists of bounded functions.

Case 2 (large space) n &#x3E;2, X = Lrl n Lr2 with
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so that X D H1 by the Sobolev embedding theorem ; f 0 E ~~1 with 

and in addition

with

The conditions (1.9) and (1.11) imply

and an additional coupled restriction between p, and p2 to the effect

that they are not too far from each other. In particular for a single

power p, one can take any p e 11, 4/(n - 2)) for a suitable choice of X.

That case requires the full generality of the abstract theory. The

assumption 1.1 is satisfied via (1.4) and (1.5) with the choice

X = Lr, n Lr2. In particular (1.4) follows from (1.7).

A similar theory can be made for n = 1, but there is hardly any point

in doing so since for n = 1 one can work directly with X = X 2 = H1.

Case 3 (intermediate example) n = 3 X = H1 n L~ f 2 with
f 0 (0) = = 0. That case has been studied in some detail because

of the special interest in dimension 3 and in working with the largest

convenient space of bounded functions. That theory falls again in the

general case,(1.4) and (1.5) now hold with X = H1 n for an arbi-

trary q E ( 3 , 6 ) .

We conclude this section with some general comments on smoothness.

The question is to ascertain whether solutions of (1.2) in ~ ( I , X) have

additional smoothness properties in space and time if the initial data

are smooth. At the abstract level, where no mention is made of space

variables, smoothness in space is naturally replaced by the property

that the solution remains in the domain of some power of the free gene-

rator, while smoothness in time is expressed in terms of differentiability.
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A general study along these lines has been made by Segal in the original

version of the theory. It does not extend in any obvious way to the more

general framework given here. Actually we shall see below on the example

of the NLS equation that serious difficulties are likely to occur.

The difficulty is already apparent when considering the differential

equation (1.1), where smoothness would be expected to mean for instance

that $/ and Ku belong to X, while the interaction term is a prioridt g ‘

expected to belong to the auxiliary space X (if any), which may be very

different from X.

At the concrete level of a given PDE, smoothness in space can be

analyzed in a much more flexible way by asking whether a given solution

u of (1.2) with suitable initial data is such that Du

remains in X for some class of differential operators D in the space

variables,not restricted to the single operator K.

In any case, at the abstract as well as at the concrete level, the

proof of smoothness often boils down to studying a linearized version of

the equation (1.2) in a neighborhood of a given solution. Typically, for

a concrete PDE, if D is a differential operator commuting with U(.) and

f a local function of u, one has to study the linear inhomogeneous equa-

tion

+ lower order terms1(1.13)
for v = Du considered as an unknown function, and prove that it has a

solution for v with more smoothness than was anticipated for Du. As we

shall see below, this technical step, and thereby the smoothness problem,

has a close connection witch the problem of globalization in small spaces.
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(i.b) The global Cauchy problem

The natural question that arises next is whether the solutions

obtained at the previous step can be continued for all times, namely the

problem of globalization. It appears already on elementary examples of

ODE that global solutions may fail to exist. For instance, the differential

equation

with initial condition y(0) = is solved by y(t) = YO(1 - t 

which blows up at time t = When the local existence result of

Section l.a is available, one is tempted to construct global solutions by

iterating the local construction : one solves successively the Cauchy

problem with initial times t i (j 0,1,2..) and initial data u(t ) in
J 

time intervals t . , with t . = t . + T , . The reason why that
J J 

’ 

J +1 J J

method fails to yield global solutions is simple : at each step of the

resolution, the norm of u(tJ) can increase by some factor A&#x3E; 1. The time

T. of local resolution, on the other hand, in general decreases as a
J

negative power of that norm.(typically a power - (p-1 ) if f has degree p) .

As a consequence the Tj form a convergent geometric series, and the
__ 

00

solution cannot be continued beyond t = to + . Tj. In addition, thisy 0 j=0

argument shows that the solution ceases to exist because its norm tends

to infinity. It also points out to a possible way to circumvent the

difficulty, namely the method of a priori estimates : that method consists

proving that any solution of the equation (1.2) is a priori bounded for

each time, in terms of the initial data, in the norms which are relevant

to solve the local problem. If this is the case, the T. that occur in the
3

previous iteration, which are expressed in terms of the appropriate norm

of u(t~), are controlled by the a priori estimate and therefore do not

tend to zero for any finite tJ, thereby preventing the convergence of

the previous series.
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In the original version of the theory (with U a bounded group in X)

it is sufficient to obtain an a priori estimate of the norm of u(t) in X,

namely to prove that there exists a fonction M(t~, u0,t) such that any

solution of (1.2) satisfies

f or all t for which it is defined. In the generalized framework,

the previous condition has to be replaced by the following condition

For any compact interval J containing tot there exists M(toluoiJ) such

that any solution of (1.2) in an interval I, toE I c J,

satisfies

The basic tool that enters in the derivation of the a priori estimates

(1.14) or (1.15) consists of the conservation laws associated with the

equation. In a number of interesting cases, these conservation laws

follow by a straighforward application of Noether’s theorem from the

fact that (1) the equation under consideration is the Euler-Lagrange

equation associated with some Lagrangian and (2) the Lagrangian is

invariant under some transformation group. This is the case in particular

for the NLS equation ( 0 .1 ) and for the NLKG equation (0.3) provided f 0
is of the form

for some real function depending only on j I z I (derivatives

being taken with respect to z and z, regarded as independent variables).

The Lagrangian densities are then
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for the NLS equation,and

for the NLKG equation.

These Lagrangiansare invariant under gauge transformation of the

first kind ~ , and in addition under transformationsof the

Galilei group for the NLS equation and of the Poincar6 group for the

NLKG equation.

Of special interest are the conservation laws that give rise to

quantitites having some positivity properties, so that they can be

used to control some norm of the solutions. For the NLS equation,

gauge invariance yields the conservation of the L2 norm and time
translation invariance yields the conservation of the energy :

where

These two conservation laws together imply at least formally, that

the solutionsare uniformly bounded in X 2 = HI p rovided E L2 and

E(f ) is finite, and provided V satisfies some lower boundedness condi-0

tion that prevents the kinetic and potentials energies to become separa-

tely inf inite f or f ixed total energy E(~). A suf f icient condition to

that effect is that V satisfies the condition
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with P3  1 + 4/n.

Similarly, for the NLKG equation, gauge invariance yields the

conservation of the chargeywhich is not positive, while the energy is given by

energy conservation then implies formally that for any

solution l of the NLKG, u z ( N is uniformly bounded- in 

under a suitable lower boundedness condition on V. The relevant condi-

tion in that case is

One is then f aced with the task of proving the (so f ar f ormal ) conser-

vation laws in the functional framework where one solves the local

Cauchy problem.Two difficulties may octur,depending on the relation

of X with X2 : The first one is that the conservation laws are easily
derived in dif ferential form f rom the equation ( 1.1 ) , whereas solutions

of (1.2) in ~ (I,X) may not be sufficiently smooth for ( 1.1 ) to hold

in a sufficiently strong sense. That difficulty can be circumvented by

a cut off and limiting procedure. One regularizes both the equation and

the initial data by introducing suitable cut offs, one proves that the

solutions of the regularized equation satisfy a regularized form of the

conservation law, and one removes the cut off by a limiting procedure.

A more serious difficulty occurs if X is a "large" space, in the sense

that X x2* In that case, one does not even know in advance that a

solution in ~ ( I , X) with initial data in X n X~ remains in X 2 for all

times where it is defined, and one must prove this fact together with
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the conservation law. For that purpose, the cut off and limiting

procedure has to be supplemented with a weak compactness argument in

X2, in which the conservation law for the regularized solutions is

used to prove their boundedness in X2 uniformly with respect to the

cut off.

Once it is proved that the solutions in 6 (I,X) with initial data

in X f’ X2 satisfy the relevant conservation laws, and are estimated in

x2 in terms of the initial data by virtue of these conservation laws,
the last step in the globalization problem is to derive the a priori

estimates (1.14) or (1.15) from the conservation laws. Here again the

situation depends critically on the relation between X and X2, but now

in contrast with the previous step, the trouble comes from "small"

spaces. For "large" spaces X &#x3E; X2’ boundedness in X2 immediately

implies the required estimates in X. For small spaces X c X on the contrary,

additional estimates are needed. In the typical case when X is a

Sobolev space one generally needs to control suitable L C) norms of

derivatives D of higher order than occurs in the conservation laws

This can (or cannot) be done by starting from equations of the type

(1.13) for such derivatives and using the estimates provided by the

conservation laws to obtain sublinear integral inequalities for their

relevant norms, from which the required a priori estimates follow by
/

Gronwall s inequality. This step is technically very similar to that

required for the proof of smoothness properties of the solutions.

As mentioned earlier smoothness is closely connected with globalisation

in small spaces.

The NLS equation provides enlightening examples of the various

possibilities described above, depending on the choice of X. We consider

again the three examples given above and indicate briefly the corres-

ponding results for the global Cauchy problem. In all cases we make

again the assumptions needed for the local Cauchy problem and we assume

(1.10 and (1.21) with P3 1 + 4/n. We present the three cases in the
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order of increasing difficulty, which is not the same as before,as

just explained. In all three cases x 2 = H1.
rl r2

Case 2 (large space) n : 2, X = L r, n L r2 Then for all 
(1.2) has a unique solution in (6(R, X 2 and that solution is

uniformly bounded in X2 (and therefore in X).

Case 3 (intermediate space) n = 3, X = H n L . Assume in addition that

f0 satisfies the condition

with

Then (1.2) has a unique solution in X) and that solution is

uniformly bonded in X2* Actually it turns out that the solution is
00

also uniformly bonded in L and therefore in X provided the free

term U (.-t)u satisfies that property.
Note that the condition (1.25)which was needed in Case 2 already at the

local stage is needed also here, but only at the global stage. This

indicates that the splitting in two stages is somewhat artificial.

Case 1 (small s aces) X - Hk with k &#x3E; n Here comes the sur rise :Case 1 (small spaces) X = Hk with k&#x3E;-E- Here comes the surprise :p 2 
* p

, The globalisation proof just sketched breaks down for n 3 8. For n 7,

one can prove that (1.2) has a unique solution by adding

the assumptions fn(0) = 0 and (1.24), (1.25) for 2~n ~7, plus

additional mild restrictions on the behaviour of f8 and f 0’ for

4 ~ n ~ 7 (that result is new).

Comparing the situation in Case-sl and 2 leads to suspect that for

high dimensions, the global solutions obtained in Case 1 may fail to

remain smooth even for smooth initial data, and therefore that the
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smoothness problem is much more complicated in the general framework

of Section l.a than in Segal’s original theory.

We conclude this section with some brief comments on the necessity

of the lower bound (1.21) or (1.23) on V for the existence of global

solutions. A condition of this type is indeed necessary. In fact, if

with C &#x3E;0 and p.. ~ 1+4/n for the NLS equation, p 3 &#x3E; 1 for the NLKG

equation, then one can show that solutions of (1.1) blow up in a finite

time if the initial data are large. The general method to prove such a

result consists in choosing cleverly a suitable norm of the solution

and deriving for that norm, from the differential equation (1.1) , a

differential inequality which implies some form of blow up. In the case

of the NLS equation, a suitable norm is the moment of inertia of

solution 1 For interactions of the type (1.26 with &#x3E; 1+4/n,2 2 Yp p 3 / ,

one can show that

so that vanishes for some finite time if  0.

(Remember that is constant), a condition which for any (suitably

regular) (fo is always fulfilled by X’fo for sufficiently large X , since
the negative potential energy increases faster than quadratically in X .

The fact that 0 implies that the kinetic energy tends to

infinity, since

11
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and II f 112 is constant. It also suggests that the solution actually

"blows in" by concentrating at a single point. By a slightly more

refined argument, one can see that concentration is most likely to

occur at the center of mass X of the solution, defined by x 12 =

W, x 9&#x3E;.

In the case of the NLKG equation, a suitable norm to consider is

simply II i 112. For interactions of the type (1. 26) with p = 1 + 2Sj&#x3E;l
2 

* 

-6 fl

one can show that F satisfies the inequality

which for E ~ 0 implies that (t) 2 becomes infinite in a finite
time.

(2) Scattering theory

We now turn to the problem of the asymptotic behaviour in time

of the solutions of the equation ( 1.1 ) . Such problems are in general

difficult, but some progress can be made in situations where in addi-

tion to the given evolution equation, there exists another, simpler,

evolution equation to the solutions of which one can compare those of

the original equation. That comparison is the basic purpose of

Scattering theory. In the present case, the simpler equation to which

(1.1) will be compared is the free equation

The first step consists in looking for dispersive solutions of (1.1),

namely for solutions that behave asymptotically in time like solutions

of ( 1. 2 ) . If u is such a solution one expects that there exists 

so that U(t) ’V’ U ( t ) U+ as t ~ :t 00 or more precisely that 
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as t , where u is defined by

If this is the case, one obtains formally from (1.2)

and therefore

Dispersive solutions are obtained by solving (2.4) for u, namely

by solving the Cauchy problem with infinite initial time. More generally,

it is useful to study the equation

for given 0 and t 0 in a neighborhood of 00 , and to derive results

on that equation that are uniform in t0 and have some continuity in to
in the neighborhood of ± ~ .

In terms of scattering theory, the maps u.:t -+ u (0) , whereu is

solution of (2.4), are simply the wave operators, the construction of

which is therefore a by-product of the solution of the Cauchy problem

at infinity. That problem will be considered in Section 2a, at a level

of abstraction comparable with that of the Cauchy problem at finite

times.

The second and more difficult step in the theory of Scattering

is to ascertain whether all solutions of the equation (1.1) or rather

(1.2) are actually dispersive. This is the problem of asymptotic

completeness. It is much more dependent on the specific equation under
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consideration, and the available treatment both for the NLS and NLKG

equations, are heavily based on the conservation laws associated with

those equations. That problem will be considered in Section 2b.

(2a) The Cauchy problem at infinity.

We want to solve the equation (2.5) with t 0 at or in a neigh-

borhood of infinity (We restrict our attention to definitxness).

For that purpose, we split again the problem in two steps: the first one

is the local Cauchy problem at infinity and consists in solving (2.5)

in some interval [T ,00) with T sufficiently large. The second one

consists in extending the solutions thereby obtained to all values of

time and is therefore covered by the results of Section lb. We therefore

concentrate on the first step, which we treat again by a contraction

method similar to that of Section la. We now look for solutions of (2.5)

in a space X... (I) c ’B(I,X), which for unbounded I includes some time
u

decay in its definition, so that the integrals that occur in (2.4),(2.5)

are convergent at infinity for u E 3C(.) and exhibit some uniformity

properties in t an t~. There are various ways to formulate that time

decay. The simplest one is to take a family of semi norms 

a E A, on X, all bounded by the norm in X and including the norm in

X itself, and a family of continuous functions ma from iR to [l ,00)

such that for any compact interval I, Sup Sup ma (t)  , and to
a tE I 

"

define for any interval I

where
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Such spaces will be referred to as uniform spaces. For compact I,

(I,X) with Julo I while the 

is strict for unbounded I.

A more complicated family of spaces is obtained by taking, in

addition to some family of semi norms of the previous type, another

family of semi norms 11.1 IS’ S E B, all bounded by the norm in X,

and f or each 6 a real number 9 1, and def ining 2Co ( I ) by ( 2 . 6 ) ,

with

where denotes the norm in Lq(I, dt). Such spaces will be

referred to as integral spaces. One could of course define more general

spaces with weighted Lq norms in the time variable.

It then turns out that the main results relative to the Cauchy

problem at infinity can be derived from a set of abstract assumptions

that are very similar to the assumption 1.1. We restrict our attention

to the case of uniform spaces, where the assumptions can be stated

en.tirely in terms of the integrals G( ( u) defined by (1.6).

For any interval I c R we denote by I its closure in R = R 

with the obvious topology. In particular if I = [T,oo) , then I = [T,ooJ

we denote by B 0 (I,p) the ball of radius p 

Assumption 2.1 For any closed interval I c R, any t E CR and any

u the function ::: -+ f ("z:,u (L.)) is Bochner integrable

from I to X and the function ( sl , s2) ~ , u) is continuous

from I x I to .Y-0(R) . For any closed interval I, for any 0 , for

any ul and u2 in G satisfied the following Lipschitz condition
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where C0 (I,p) is separately non increasing in I and p and tends to

zero when I tends to zero for fixed p .

(By "I tends to zero" we mean that both ends of I tend to a common

value, possibly or -~).

Under the assumption 2.1, one derives the basic results concerning

the Cauchy problem at infinity by arguments similar to those used in

the study of the local Cauchy problem at finite times, and based again

on the contraction mapping principle. These results include the

existence of asymptotic states (i.e. of the limits u+ = lim u(t) as

t ~ ± ~ ) for dispersive solutions (now technically defined as solutions

the existence an uniqueness of solutions of (2.5) in a

neighborhood of infinity, and continuity of the solutions with respect

to the initial time and initial data. In order to state the results,

it is convenient to define the space

with norm

Clearly X~ is a Banach space continuously embedded in X.

Proposition 2.1 Let the assumption 2.1 hold. Assume (for simplicity)

that the interaction is source free, namely f (t,0) = 0. Then

( 1 ) Let I = UOE k 0 and be a solution of

( 2 . 5 ) . Then u ( see ( 2 . ) . In particu lar there exis ts u in X
0 

+ 0

such u+ in ~0 when t - 00.
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(2) For any p &#x3E; 0 , there exists TO (p)  OJ such that f or any I ,

where I = [TO(P) ,(0) and for any-u-’ 0 E X 0 with 11110110 S p , the equation

(2.5) has a unique solution in 2 ~) . That solution is actually

unique 
, , 

- _ -

( 3 ) In the s ituation of ( 2 ) , the maps ( t , u ) u and (to’ u + u(3) In the situation of (2), the 
0 0 u and (t 0 u u

are continuous, with the topology of I x X 0 on ( t , ofXO(1) on u

and on u.

Similar results can be obtained with’the integral spaces of the

type (2. 6) - (2.8) , although the abstract formulation is slightly more

complicated.

As a by product of the local theory at infinity, one obtains in

general a proof of existence of global solutions and of asymptotic

completeness( namely all solutions are dispersive) for small initial

data. Contrary to the global existence proof of section lb, that proof

does not depend on a priori estimates of the solutions. In fact, the

applicability of the contraction argument leading to proposition 2.1

part ( 2 ) relies on the possibility of making small . That can

be achieved in general not only by taking I small for given p , but

also by taking I = R and p small.

Proposition 2.2 Let the assumption 2.1 hold and assume in addition

that 0 when Assume that f (t,0) - 0. Then there exists

p &#x3E; 0 such that for any Uo E X 0 with P and any R,

the equation (2.5) has a unique solution (if t 0 is finite, the

solution is actually unique in ~ (R,X)).

When trying to apply the abstract theory to a specific equation,

the basic problem one encounter is to choose the spaces That

choice is dictated by the available decay estimates on the free group

U ( . ) , and the need to prove the basic estimate ( 2 . 9 ) ~ In particular
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the time decay to be included in the definition can be

at most that of the solutions of the free equation (2.1). On the

other hand, as in linear scattering theory, some decay of the inter-

action in space is needed. For interactions of the typical form

(0.4), that condition takes the form of lower bounds on the allowed

values of pl’ P2-
We now show how the abstract theory can be applied to the

NLS equation. The basic decay estimate on the free group is (1.7)

We consider only the cases 2 and 3 of section l.a.

Case 2 X = Lrl nLr2. For the norms I 1.B I and the estimating
a

functions m (t) of the abstract theory , we take the norms in Lr ,
a -

with (1 + and 6(r)= Min (I(r) ,I) for

some 6, 0  6  1, and with 6(r) defined by ( 1. 8 ) so that for

any interval I

One can then show that the assumption 2.1 holds provided f0 satisfies

the assumptions of section l.a (namely f ( 0 ) - 0 and

(1.10), (1.11) and in addition

The condition on PI resulting from the best choice of 6 can be

rewritten as

or equivalently
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The same equation can be treated in integral spaces of the type

(2.6) , (2.8) under exactly the same assumptions on f 0 and with

essentially the same results. For that purpose, one takes for the

norms and associated function m 
a 

again the Lr norms for

r _ r _ r , with m ( t) - 1, and for the norms ) [ .)) and associated1 2 r $

exponents q ( ) again the same norms with q(r) = ( 1 + E ) S ( r ) 1 for

some ~ sufficently small, such that

A nice application of the previous integral spaces can be made by

using an inequality of Strichartz which states that for all I E L2,

U(.) E Lq(R n+l) for q = 2 + 4/n. Together with elementary

arguments, this implies that the previous integral spaces with

6 = n/(n + 2) and 6 = 1 are such that H1. In particular,

if one is in a situation where energy conservation holds and where

the H1 norm of solutions is bounded, namely if f 0 satisfies (1.16)

and (1.21), then one obtains from Proposition 2.2 a proof of asympto-

tic completeness for small data in H1. For interactions of the type

(0.4) with a single power p and positive ~, this covers the case when

4/n _ p - 1  4/ (n - 2).

Case 3 n = 3, X = H1 n L~ In that case one can define ,~ 0 E . ) is

a way similar to that of case 2, namely

with again 6(r) = f or some 6, 0  6 f ).2 *
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One can then show that the assumption 2.1 holds if in addition to

the assumptions made in section l.a for the local Cauchy problem,

f0 satisfies the condition

That condition is stronger than (2.13), indicating that the present

choice of X is less natural than the previous one.

When combined with the assumptions and results of Section 2.a, the

results of this section provide some additional information. For
N

instance, starting with initial data u 0 E X0 at some sufficiently

large positive time toy one can construct a solution of the Cauchy

problem that is dispersive at + 00 and continue that solution to

all times. In particular if t 0 + , u0 = u+, the wave operator Q+

u+ ~ u(0) is well defined. Such solutions need not be dispersive

at t ~ 00 however, i.e. asymptotic completeness may fail to hold.

Another result of interest may be the extension of conservation laws

to infinite times. For instance, for the NLS equation in case 2,

one can show under the assumptions made in sections 2.a and l.b that

the dispersive solutions obtained in Proposition 2.1 satisfy

and satify the identities

the second of which is’ strongly reminiscent of the intertwining property

of the wave operators familiar in linear scattering theory.

Similar results hold for the NLKG equation.

(2b) Asymptotic completeness

Once one knows how to solve the Cauchy problem at infinity
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(four initial data in XO) and in particular how to construct the

wave operators -Q,+ : u1 + u ( 0 ) (as operators from X~ to X), the

next question to ask is whether all solutions of the equation (2.5)

with finite t 0 are dispersive, namely lie in OC0(R) , for all initial

data in X0 or at least in some space X densely and continuously

embedded in X0* If in addition E is stable under Q+, this property
_

implies asymptotic completeness in Z .

Such a property holds only in special cases and is strongly

dependent on the equation under consideration. It has been established

only for the NLS and NLKG equation with interaction satisfying a

suitable repulsivity condition. The proofs are based on a priori

estimates on the solutions, derived from conservation laws

satisfied by the equations. There are basically two methods available.

The first one is based on conformal invariance for the NLKG equation

(in which case it works only in the massless case and its

galilean analogue, hereafter called pseudoconformal invariance, for

the NLS equation [ 3 ]. The second method, which is more complicated,

is based on a modified form of dilational invariance and applies to

the massive NLKG equation L 7 J and to the NLS equation in some

specific cases [ 6 J. Here, as an illustration, we briefly sketch

the pseudo conformal invariance method for the NLS equation.

One first remarks that the free Schr6dinger equation, and more

remarkably, the NLS equation, in the case of a single power inter-

action(cf(0.4)) with p = 1 + 4/n, is invariant under a projective

representation of a group is which is larger than the Galilei group
and is generated by the Galilei group, the dilations (t,x) -

(t 28 , xe8) and a one parameter group of transformations, here-

agter called pseudoconformal, (t,x) - (t(l + at) -1 ,x(l + at ) 1 )
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or, in projective coordinates (t,x,l) - (t,x, 1 + at). That

group is obtained by enlarging the Galilei group by its
transform under the external automorphism generated by the inversion

(t x) -~ (in projective coordinates (t,x,1 ) ~ (1,x, t) .

Under that automorphism space translations are exchanged tai th

pure Galilei transformations, and time translations with pseudo

conformal transformations. S is sometimes called the Schr6dinger
group. The projective representation under which the free

Schr6dinger equation is invariant has the pseudoconformal transfor-

mations represented by

I

For a general interaction f0 (satisfying (1.16) , the NLS equation

is no longer invariant. However by a standard application of

Noether’s theorem, one derives easily the following approximate

conservation law

when W(z) = W(lzl ) ) is defined by

v

and If is defined in analogy with (2.2).
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Define now 21 at the Hilbert space with norm

Let the interaction f0 satisfy (1.16) and be repulsive in the

sense that V ~ 0 and W s 0 , and let be a solution of (2.5)

with initial time t 0 = 0 (for simplicity) and 

It follows then from L2 norm and energy conservation and from

(2.19) that for all t

-

so that If is bounded in E uniformly in time. By a straighfor-

ward application of (1.7) and the Sobolev inequalities, this implies

that T itself satisfies the time decay

for all r satisying y- 2013  r  2 °or a r y g 2 - n 
 

The previous argument, which is partly formal at the moment,

has to be combined with the functional framework developed in

Section 2.a to study the Cauchy problem at infinity. The result
r1 r2are most satisfactory in case 2, with X = Lrl n Lr2. In that case

E c X0, and the preceding arguments boil down to a proof of
,

asymptotic completeness in Z for repulsive interactions in the

previous sense. In particular (2.22), (2.23) imply that all solutions
- 

’

with initial data (f 0 E E belong to R).

Similar results hold for the massless NLKG equation.
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