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S ection 1 Introduction

In this note I will report on some recent progress in the study

of boundary value problems for systems of equations on Lipschitz domains

D in ]R , with boundary data in L2(àD,dcr). The specific problems I will

discuss here arise from elastostatics and hydrostatics.

The Dirichlet problem for a single equation (the Laplacian)

on a Lipschitz domain D with data and optimal estimates was

first treated by B.E.J. Dahlberg (see [4] and [5]). His approach
relied on positivily,Harnack’s inequality and the maximum principle, and

thus, it could not be used to study for example the Neumann problem,

or systems of equations. Shortly afterwards, E. Fabes, M. Jodeit Jr

and N. Riviere ~6~ were able to utilize A.P. Calderon’s theorem

on the boundedness of the Cauchy integral on C1 curves, to extend the

classical method of layer potentials to the case of C1 domains. In thiswork

they were able to resolve the Dirichlet and Neumann problem with 

data, and optimal estimates, for C1 domains. They relied on the Fredholm
theory, exploiting the compactness of the layer potentials in the C1
case. In 1979, D. Jerison and C. Kenig [9j were able to give a simplified

proof of Dalhberg’s results, using an integral identity that goes back

to Rellich (~l5j). However, our method still relied on positivity.
Shortly afterwards, we were also able to treat the Neumann problem on

Lipschitz domain, with data and optimal estimates [lO]. To

do so we combined the Rellich type formulas with Dahlberg’s results. This

still restricted the applicability of the method to a single equation.

In 1981, R. Coifman, A. Mc Intosh and Y. Meyer [2" established

the boundedness of the Cauchy integral on any Lipschitz curve, opening

the door to the applicability of the layer potential method to Lipschitz

domains. This method is very flexible, and does not in principle dif-

ferentiate between a single equation or a system of equations.

The difficulty becomes the’solvability of the integral equations, some

unlike in the C1 case, the Fredholm theory is not applicable, because
on a Lipschitz domain operators like the double layer potential are

not compact.

For the case of a single equation (the Laplacian) this diffi-
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culty was overcome by G. Verchota (Cl6j’) in his doctoral dissertation.

He made the key observation that the Rellich identities mentioned before

are the appropriate substitute to compactness, in the case of Lipschitz

domains.

Thus, he was able to recover the results of Dahlberg (4], and

of Jerison and Kenig [10], for Laplace’s equation on a Lipschitz domain,
but using the method of layer potentials.

This note sketches the extension of the ideas of G. Verchota

to the case of systems of equations. The results thus obtained had not

been previously available for general Lipschitz domains, although a lot

of work had been devoted to the case of piecewise linear domains. For

the case of the systems of elastostatics, the result that we are about

to state had been previously obtained for C1 domains by A. Gutierriez [7J,
using the Fredholm theory as in (6J. Once again, compactness was a crucial
element in his analysis. This is of course, not available for Lipschitz

domains.

The organization of the paper is as follows. In section 2 we

treat the systems of elastotastics. This is joint work in progress with

G. Verchota. In section ,3 we treat the Stokes problem of hydrostatics.

This is joint work inprogress with E. Fabes. Full proofs of the results

stated here- will appear in future publications.

It is a pleasure to express my deep gratitude to my collaborators,

E. Fabes and G. Verchota, for theircontributions to our joint work, and

for allowing me to announce here our unplublished results.

Section 2 Linear elastostatics on a Lipschitz domain.

For simplicity, in the rest of this note we will treat domains

D above the graph of a Lipschitz function  , y i .e. D ~ j[(x,y): y &#x3E; 

where y : : is a Lipschitz function and n = 3. Points ( x y (x ) )
or (y,~(y» on dD will usually be denoted by P or Q . Points ( x,y) in

D or D will be denoted by X . The surface measure on D will be denoted
+

by and the inward unit normal will be n . By 1’+(Q), Q E dD we will

denote a vertical circular cone completely contained in D . Note that
+

the opening of F+(Q) can (and will) be taken to depend only on the

Lipschitz constant of y . . By I’ (Q) we will denote the reflection of
.+ -l’(Q), this time it is contained in cD - D- . For a function u(X) defined

on D , (u)’;*"(P) = sup /u(X) /, , P C 6D We will say that u(X) converges non

xE:f (p)
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tangentially at P to a limit i if lim u(X) = 2 . If u is defined

in ]R B6D and converges non-tangentiably at P C ()D from D and D- ,

we will denote the respective limits by u (P) and u (P).

Let X --, 0 2 [1 &#x3E; 0 be constants (Lame moduli) . We will seek

to solve the following boundary value problems, where

Here and in the sequel we will use the summation convention. Problem (1)

is a Dirichlet problem, while Problem (2) is a Neumann type problem in

which k is an arbitrary, (but fixed) positive number. To ease the nota-
.. 

d 
k-

tion we introduce the operator T u =

k
operator T is called the generalized stress.

Problem (3) is the particular case k = ~ of problem (2) . The

operator T = T~ is called the stress.

Theorem 2.1 : a) There exists a unique solution of problem (1) in D , y
4 2 - -

with (u) C L2 and u having non-tangential limit f (P) for

almost every P  dD . The solution u belongs to the Sobolev space

H1/2 (D).
b) For every k &#x3E; 4 , y k , there exists a unique solution

2013’ 2
of problem (2) in D , which is 0 at infinity, with C 

and with Tku having non-tangential limit f(P) for almost every P C aD .

The solution u belongs to the Sobolev space H 3/2 (D).

Theorem 2.2 : If 11 Vyll co ~ 1 , the same conclusion as in Theorem 2.1 b)

holds for problem (3).
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At thus time we do not know whetter Theorem 2.2 holds without

the restriction 1 . The proof of Theorem 2.2 is some what com-

plicated, and will not be presented here.

In order to sketch the proof of Theorem 2.1 , we first

introduce the Kelvin matrix of fundamental solutions (see [111 for
....

. Our solution of (1) will be

given in the form of a double layer potential

where the operator Tk is applied to each column of the matrix I’ .

Our solution of (2) will be given in the form of a single

layer potential

Lemma 2.3 : Let ai(X) , S(I) (X) be defined as above, with - E 
Then, they both solve the system pAu + div u - 0 in D and D- .

Moreover ,

Therefore, y
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The proof of Lemma 2.3 follows from the theorem of R. Coifman,

A. Mc Intosh and Y. Meyer ([21). See [16] for the details in a similar

situation.

Thus ~ the proof of Theorem 2.1 reduces to the i nvertibi li ty

on of the operators

This is accomplished by means of the following lemma :

Lemma 2.4 : There exists a constant C , y which depends only on the

Lipschitz constant of 6D y and on the number k , y such that, if k / p
2

we have , for 

and,

To show that Lemma 2.4 implies the invertibility of the operators in

question, we follow Verchota’s [16J ideas. First of all the inequalities
1 k jj_ 1 k 7

clearly show that 1 I + (Kk)" and 11 (K ) are one to one. A simple
2 2

k .’’-
argument using the continuity of (K )/B shows that these operators have

closed range. We can therefore attach an index to these operators which

might possibly be infinite. Now, for each t , 0  t  1 , y we consider

the Lipschitz domain Dt given by the graph of ty . By the theorem oft 
k -;,-

Coifman - McIntosh - Meyer ( 2 ) , the operators (K ) , corresponding
t

to the domains Dt , are continuous in norm. At t - 0 we are in thet

case of the upper half plane, and therefore the index is 0 . Therefore

the index is also 0 at t = 1 , and the desired invertibility follows.

We are indebted to A. McIntosh for pointing out to us this simple ar-

gument using the index, which simplifies our previous proof.

We therefore pass to the proof of Lemma 2.4. In order to do

so, we will first explain the boundary conditions in (2) from the point
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of view of second order elliptic systems.

LetCL. 1 1 r s _ M , 1 1  I , j  n be constants satisfying
ij

the ellipticity condition

and the symmetry condition ( We consider vector valued functions

satisfying the divergence form system

From variational consideration, the most natural boundary conditions

are Dirichlet conditions = f) or Neumann type condition

. The interpretation of (2) in this fra. me-

work is the following : given k &#x3E; 0 , there exist 4

satisfying the ellipticity and symmetry

conditions, and such that

: (The Rellich, Payne-Weinberger, N cas identities (see 1151,
n

Let h be a constant vector in ]R and suppose that

-

, and u and its derivatives are

suitably small at oo . Then

Proof : Apply the divergence theorem to

Corollary

satisfies
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where 
t 

ur denotes the tangential components of the gradient of ur , I

and the comparability constants depend only on the Lipschitz constant

of dD .

-
Proof : Take h = e . Because of the Lipschitz character of OD I h, n. 

&#x3E; C.
- n

For the opposite inequality, observe that, for each r , s j fixed, the

vector h, n rs b n 
rs is perpendicular 

to n . Because of lemma 2. ,vector is perpendicular to n . O Because of 

Remark 2.7 : At this point we can explain the difference between problem

(2) when k , , and problem (3) . In the case of problem (2) , with k / p ,
rs

satisfy the hypothesis of corollary 2.6. On the other hand, when
IJ
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~ which obviously

does not satisfy the hypothesis of 2.6.

Proof of Lemma 2.4 : Let ~(X) = Sg(X). We will apply corollary 2.6 to

u t which we can in the case k / p . We will do so in D and also in D- .
k- 

(First note that T u - 2013 . * Then note that because of Lemma 2 .3 , (d)
6v

But, again using Lemma 2.3, (d) we see that Lemma 2.4 follows immediately.

We have thus established Lemma 2.4 and hence Theorem 2.1.

Section 3 : Linear hydrostatics on a Lipschitz domain

We willcontinue utilizing the notation introduced in Section 2.

We will discuss the so called Stokes problem of hydrostatics.

We seek a vector valued function u - (u ,u ,u ) and a scalar
3

valued function p satisfying

Theorem 3.1 : There exists a unique solution of problem (4) in D , y with
T’2 _ _

(u) E and u having non-tangential limit f (P) , for almost

every P E The solution u belongs to the Sobolev space H ~/~ (D) .
In order to sketch the proof of Theorem 3.1 (which parallels

that of Theorem 2.1) , we introduce the matrix of fundamental solutions

( see the book of Ladyzhenskaya 12 ) F(X) = ( r , , (X) ) , where
. 

1J

, and its corresponding pressure vector

. Our solution of (4) will be given

in the form of a double layer potential
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We will also have use for the single layer potential

Lemma 3 .2 : Let ~g ,5(9) be defined as above , with

Then u (X ) - 3()) (x) so lves

. Moreover

The proof of Lemma 3.2 follows, as the one in Lemma 2 .3 from [2]. See [12]
for the case of smooth domains. Thus, the proof of Theorem 3.1 reduces

to the invertibility in of the operator
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Lemma 3.3 : There exists a constant C , which depends only on the

Lipschitz constant of OD , such that, for all 9 ( L2 (OD da),

and

We turn now to the proof of Lemma 3.3. The proof relies on two integral

identities.

n 
Lemma 3.4 : 1 Let h be a constant vector in ]R , and suppose that pu - vp ,
div u - 0 in D , y and that u,p and their derivatives are suitably small

at 00 . Then, y

Lemma 3.5 : Let h , u and p be as in Lemma 3 .4 . Then , y

The proofs of Lemmas 3.4 and 3.5 are simple applications of the proper-

ties of u , p, and the divergence theorem.

An immediate consequence of Lemma 3.5 is

C orollary 3.6 : Let u ~ I p be as in Lemma 3.4 , y D a Lipschitz domain.

, where C depends only on the Lipschitz

constant of 6D .

A consequence of Corollary 3.6 and Lemma 3.4 is

Corollary 3.7 : Let u , p be as in Lemma 3.4, D a Lipschitz domain.

Then,

where, by definition
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Proof : Lemma 3.4 clearly implies that

r’ dcr -s; C r’ /2 dJàD 
2 

Arguing as in the proof of corollary 2.6, using Lemma 3.4, we see that

I I V - 1 2 dcr  C(L: J I V ur/2 dcr) + II p n hae a 
s 

dcr I .J dD u d0 c  p z J JD I p da I .

By corollary 3.6 , the right hand side is bounded by

c( aD 1 V-12 u d 1/2 . i f I n ()us 3x 12 .

’B j 
s 0.D j 6D j

The corollary now follows, using corollary 3.6 once more. We can

now prove Lemma 3.3. Let u = S(g). Observe that (d) in Lemma 3.2
ou

implies that both Vtu and n 
s 

are continuous across 6D . Lemma 3.3
t suX.

J

now follows from corollary 3.7, using the second part of (d) in Lemma 3.2.
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