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1. INTRODUCTION.

Singular Green operators are, roughly speaking, the messy terms that come

up when one considers boundary value problems for elliptic differential and

pseudo-differential operators on’a em manifold 11

(of dimension n) with boundary ~Q ; here the parametrices and compositions
contain pseudo-differential terms, but also some other terms that are not

pseudo-differential on Q. Their systematic introduction is due to I~. Boutet de

Monvel [3]. Let us first give some examples.

Example 1. The operator

where ANeu and ADir are the Neumann, resp. Diriclilet, realization of a strongly

elliptic differential operator on 2 , , is a simple kind of a singular Green ope-

rator (s.g.o.).

Example 2. Let P be a pseudo-differential operator (ps.d.o.) on an n-dimensional

C manifold E in which S2 is snoothly imbedded, and denote by P the operator on
S2 induced from P by the formula

where r and e are the restriction, resp. "extension by zero" operators :

r+u = u for uE0’(Z) ; and e v equals v on S¿, zero when v is a f unc t ion

on St. When P and Q are ps.d.o.son ¿ having the transmission property (Boutet [3])

at a~, the "leftover" operator

is a singular Green operator. One can in fact break it up in simper parts.

When Q is of order O, and the situation is localized to the case where Q =F,n+
with boundary 3Q = (x EIRn I x n = 0} , then
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where

here J stands for the reflection operator J : u(x’,x  )u(x’ ,-x n ), and e and
_ 

n n

r are the extension by zero operator and restriction operator for 1Rn cEn.

Also G+(P) and G (Q) are s.g.o.s (Grubb [10], [7]). When Q is of order &#x3E;0,

one must add some terms containing traces at x n =0.

Example 3 : Let T be a trace operator in the sense of [3] ; this class contains

the operators of the form y P , where P is a ps.d.o. on E having the trans-o 

3 

.

mission property at 3Q, and y .u = (a n) . Let K be a Poisson operator [3]
J 3n ]3Q 

’

(this class consists of operators mapping functions on 3Q into functions on Q,

and they can be described as the adjoints of those trace operators that are

defined on all of LZ(S~)). Then KT is a s.g.o., and of course also sums
N

Z K.T. of such composites are s.g.o.s (example 1 is in fact of this kind).
j=l J J

Example 4 : When G is a s.g.o. and P is a ps.d.o. as above, then GP~ and

P G are s.g.o.s When G’ is another s.g.o., GG’ ’ is one.

Example 5 : Let Q be a smooth bounded open subset of En, let A be a uniform-

ly elliptic invertible operator on IRn and let A + and A - be invertible reali--

zations on the exterior domain Q+ = IRn B _, resp. the interior domain Q-,
defined e.g. by Dirichlet or Neumann boundary conditions. Then the operator

on is a kind of s.g.o. consisting of terms of the form+ - 
+ + -1 - - - - -1 + + 

g 
+ -}

KT on Q and Q-, and terms e +r+A-Ie-r- and e-r-A-1e+r+ that resemble G (A ) in (2’ ’
+ -

relative to Q or S-) , apart from the reflection J.

The concept of singular Green operators has been generalized to other situa-

tions (e.g. parameter-dependent cases, with applications ot functional calculus

and evolution equations, [7], [8]). Instead of going into that, we shall here

concentrate on a new result for the original s.g.o.s (complete details in [10],
announced in [9]) :
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Theorem 1 : Let Q be a compact n-dimensional COO manifold with boundary aS~,

and let G be a polyhomogeneous singular Green operator on S2 of order -d  0,

continuous from L2() to . Then the characteristic values s (G) = Àk(G*G) 1/2( ) 
- 

( ) k k )

satisfy

where c(gu) is a constant derived from the principal symbol of G. In the self-

adjoint case, the positive, resp. negative, eigenvalue sequences satisfy similar

estimates

The constants c(go) and ct(g°) will be explained further below. We also
write (4) as etc.

The existence of an upper bound,

has been known for some time (cf. Grubb [6]), and (4)-(5) have been shown in

various special cases before. For Go as in (1), Birman showed (6) already in

[1] for the second order case ; and a precise asymptotic estimate (with remain-

ders, sharper than (4)-(5)) was obtained in Grubb [5], where it was shown that

G 0 is isometric with an elliptic ps.d.o. over M. Hmelnickii [11] showed

(4)-(5) for some more general operators occuring in connection with elliptic
differential boundary problems. Laptev [12] showed (4)-(5) for G+(P) as in (2),

when P is a ps.d.o. of order -d, not necessarily having the transmission property.

An interesting feature of the estimates (4)-(5) is that they involve the

boundary dimension n-I instead of the interior dimension n (the continuity of

G from L2(Q) to Hd(0) merely implies (6) with n instead of n-1). A nice conse-

quence of the generality of Theorem 1 is that when G is a s.g.o. of order -d,

covered by the earlier results, and P is any ps.d.o. of order -d’ (having the

transmission property), then

« uu

in view of Example 4 ; it is not ), as one would get

from product rules for sk-numbers. -Note that G in Theorem 1 is not assumed

to be "elliptic" in any sense.
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2. DETAILS ON THE STRUCTURE OF s.g.o.s.

The proof of Theorem 1 builds on a very precise knowledge of the struc-

ture of s.g.o.s.

We only consider here s.g.o.s of class 0, ~ they act on all of L2(~) (whereas

the more general s.g.o.s of class contain additional terms
(

where the K. are Poisson operators). For the situation where Q=R? , a singular
J +

Green operator of order d and class 0 is an operator of the form

where the symbol-kernel (x’,"xn9yn ) lies in jR) (the restriction
2 

nn + +

of to lR+ x 1R+) as a function of (x ,y ) for each (x’ , ’ ) , and is of
+ + n n

type S1909 or polyhomogneneous, in the sense defined below. Here c(x’) stands

for a continuous function depending on the indices, and I; ’&#x3E; = (1 + ’ ) .

N cx&#x3E;

Definition 1 : g is of type S and order d, when g is C in2n-2 - - ,
R + x]R + and there are estimates

f or any set of indices k, k’ , m, m’, a, P.

The topology on the (Frechet) space of such symbols is defined e.g. by
the system of semi-norms

where c(x’) is taken as the smallest value enterring in (8), and K runs through
the compact subsets of .

, , - ,
Definition 2 : g is polyhomogeneous of order d, when there is an asymptotic

expansion
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in quasihomogeneous functions :

with g- X g being of type S 1,0 and order d-M for all M.~ 

JM ’

For some purposes it suffices to consider symbol-kernels of type S~ , 0’
but Theorem 1 requires polyhomogeneity (or at least the existence of a homo-

geneous principal part).
In [31, the operators G are defined by their symbols, here the symbol

g(x’ ,!, ,n ) associated with the symbol-kernel ’§/( ’,I ’,x ,jv ) is then n associated with the symbol-kernel 

sesqui-Fourier transform

Then (8) looks more complicated) becaiise :f (]-R- + x B ) by 0 on
2 - - 

" 
- 

f1R2 B (IR+x ]R ) ) is Fourier transformed to a fancier space If 6-- 11 Q3) T-1 ri of’n n

C functions with certain asymptoLic properties’ and the restriction operators

from F,2 to R x R carry into fancier projections.On the other hand (10)

carries into a simple homogeneity :

In the polyhomogeneous case, G has a principal symbol g 0 resp. a principal
-0 

symbol-kernel g .

We also define the boundary symbol operator 9(xl,1,D n) [resp. principal
- n

boundary symbol operator 90(x’,C’,Dn)] by

so that G can be regarded as a ps.d.o. in x’, valued in the space of boundary

symbol operators. Since the kernel is in x R ) , the operator 

is compact on and belongs to any Schatten class C 
p 

for p&#x3E;(J (i.e. the

sequence of characteristic values is in ,r¿ P for any p&#x3E;0).
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We can now define the constant c(go) in Theorem 1. It equals

or, equivalently (in view of the homogeneities),

where N[I,B] stands for the number of eigenvalues &#x3E; 1 for B. When go is self-

adjoint, one has

and there is a formula analogous to (12).

3. INDICATIONS OF THE PROOF.

We now list some of the ingredients in the proof of Theorem 1. For one thing,

perturbation methods for eigenvalues estimates are used to a great extent, and

the following plays a central role :

Lemma 1 : Let B be a compact operator in a Hilbert space, let a &#x3E; 0 and c 0
- - - o

and assume that for any integer M &#x3E; 0 there is a decomposition

where BM and B’ satisfy, respectively,2013201320132013 m 20132013 m 20132013201320132013" 2013201320132013201320132013201320132013

where c -*C0 and e -0 for 2013201320132013 M o 20132013 M 20132013
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Then

Similar results hold for X*(B) in the selfadjoint case.k

It is a variant of the Weyl-Ky Fan theorem (cf. e.g. Gohberg-Krein

[4, Chapter 2]), derived from the minimum-maximum principle.

Secondly, we need the following result for ps.d.o.s.

Lemma 2 : Let P be a polyhomogeneous Nx N-matrix formed ps.d.o. of order

-d’ 0 on a compact n’-dimensional C manifold without boundary. Then P is

a compact operator whose characteristic values satisfy

In the selfadjoint case, there are similar statements for the sequences X ±(P)k

Note that P is not assumed elliptic here ; in the elliptic case there are

more precise estimates by Hormander and Ivrii. The

result of Lemma 2 is shown, along with generalizations to anisotropic symbols,

by Birman and Solomiak in [2]. observe that the result for sk(P) can be

obtained easily from Seeley’s principal estimate [13] for the elliptic case :

write where A is a selfadjoint positive ps.d.o. with

symbol &#x3E; -2d’ ; then A is elliptic so that’ M p

whereas

Then (17) is obtained by an application of Lemma 1.

Thirdly, and most important for the proof, is the detailed knowledge of G.

By a localization, the problem is carried over to the situation where G acts

in IRn and is multiplied on both sides by functions with compact support ; for
+

, +, , - , 

simplicity we leave out the latter. We now expand g in a double series of Laguerre
functions. Actually, they are a variant of the usual Laguerre functions,
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defined for a parameter a &#x3E; 0 by

for k = 0 1 2 ... ; they f orm an orthonormal basis for L 2 (JR ) . (Their Fourier
+

transforms

are used in [3]). They are obviously and have moreover the nice

property

rapidly decreasing ;

the rapid decrease means that kNbk is bounded in k for all N, or, equivalently,

( 1 +k) N 2  f or al1 N . 

k

Z (I+k) 
N 

1 lbk ! 2 - for all N.

k 
"

Now we take equal to I for 1 and smooth and &#x3E; 0 for all

E 1 E IR n-I , , and we write

It can be shown that the system of estimates (8) is equivalent with the following

system of estimates

for all sets of indices N, N’, a, . Note that each is a ps.d.o.
2013i 

£m

symbol on of order d, and the estimates (20) mean that the double sequence

(c ) is rapidly decreasing in the space of such symbols (s.g.o.s are

introduced by double series in [3]).

Remark : It may be of interest to observe, that for a ps.d.o. of order d0

with constant coefficients and the transmission property, the symbolic operator

R is a Toeplitz operator with respect to the Laguerre system ;
n Q +

it is described by an infinite matrix (az_m ( 1)) Z , ni-&#x3E;-O where the sequence 
is a rapidly decreasing sequence of ps.d.o. symbols on 1R 

1 
of order d. The

derived s.g.o. G+(P) (see (2)) is then described by the associated Hankel matrix

(a~+m+l (~~)2,m&#x3E;O. . The rapid decrease of the sequence (a 2Z assures that the
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With the decomposition (19), the boundary symbol operator applies to

u E as follows :

where the mapping is in fact a trace operator,

and the multiplication by I

operator. Then we may view G as

where K 
m 

is the Poisson operator with symbol-kernel k m (x’ ,1j ’ ,x ) n and T 
m 

is
m m 

J 

n m

the trace operator with symbol-kernel (p (x n ,0 (’)). * One here has moreover that

(where °m£ is the Kronecker delta), thanks to the orthonormality of the Laguerre

system. (Trace and Poisson operators are defined by formulas like (7), only

with g(x’,’,D ) replaced by the respective other boundary symbol operators
n 

.

relative to 

The proof now uses in an essential way, that G is composed of operators

going from Q to 3Q and from 3Q back to Q. In the localized situation, there is

a complication due to the fact that even when G is truncated on both sides

with compactly supported functions, T maps into functions with unbounded
. n-l . 

m 
...

support in IR . Here one can obtain compactness either by inserting cut-off

functions between K and T , or for instance by replacing 
1 

by a torus in
m m 

y

the whole calculus (the latter gives better estimates in Theorem 2 below). Let

us leavethis problem out of the picture, and work with (21)-(22) as if we were

back on the compact manifold Q with boundary S~a,

Write now, for each M &#x3E; 0,
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then we shall show that Lemma 1 can be applied to this decomposition.
As for the GM term, one needs an estimate of the s (G’) valid for all k.

m k M

This is furnished by

Theorem 2 : Let G be a s.g.o. on Q of type Sj and order -d  0, continuousd 1,0 -
from L2() to The characteristic values satisfy

(24) kd/(n-1)  C(G) ,(24) sk(G) kd/(n-l) .;;;; C(G) , ,

where C(G) is a constant estimated by a certain finite set of the symbol

seminorms (9) in the localized situation.

We shall not describe the proof, which is based on some of the same ideas

as the present proof (notably the decomposition (21)), combined with perturba-
tion methods for characteristic numbers.

When M+m, G’ goes to 0 in all symbol seminorms, so (15) holds for G’m m

with a = d/ (n-I) .

Now consider GM . * Let us write it

Then we have for each k, using ’ (22) and the well known identity 
for compact operators :

where PM is the M x M-matrix of operators on 3Q

Here K*K is a ps.d.o. on a~ of order -2d, by the rules of calculus, so we
Q m



XIII.11

can apply Lemma 2 with 7- == 3Q ; this gives

Going through the same argument on the boundary symbol level, one finds that

which converges to ~~, ~ uniformly for x° , in a compact

set and It;,’ I = 1, so that

Then G~1 satisfies (14) Lemma I can be and the proof is complete. f

The arguments for the A sequences the lines.

The result applies in particular to each of the Examples 1 ~.’+. As tor

Example 5, we can write GI as a sum of two ttrrns, where each satisfies estimates

(4) ~- (5) ~ fI The study ef G 1 is then used to show that the operator

has the same spectral behavior as the up to a remainder

that is (more details in [10]).
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