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Consider a wave equation with non-linear potential :

00

where f is a C -function in all variables and P is a strictly t-hyperbolic

linear operator of second order. The linear equation, with f = 0, has simple

progressing wave solutions which are of considerable direct significance in for

example scattering theory. Thus if

is the Minkowski wave operator

solves (1), with f --- 0, and superposition of such solutions gives the fundamental

solution. The latter superposition process has no general analogue for (1) but

the progressing wave solutions are still of special interest.

Two or more progressing waves, (3), do not interact in the linear case

but in the semi-linear case (1) they do and new singularities are produced in the

solution-although for two waves the new singularities do not propagate. Some

results on interaction of up to three waves were given in [3] and will be

outlined here. Related theorems have since been announced by Bony in this

seminar [11 so emphasis will be placed on the behaviour of polyhomogeneous,

or "classical" singularities. Results on more general propagation theorems for

(1) are referenced in [1] , [3].
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1. LOCAL EXISTENCE OF PROGRESSING WAVES

There are standard results on the existence of local solutions to the

Cauchy problem for (1), typically with initial data (u,D E 

s &#x3E; n/2. Linear solutions such as (3) are only in Hs for s  1/2 but part of the
loc

significance of the conormal regularity of progressing waves, discussed in [3] ,

is that there are indeed solutions like (3) to (1). The result below is based on

ideas from Ritter [4].

Let P be a second-order differential operator in an open neighborhood

12 c IR x of 0, with P stricly hyperbolic with respect to t. Choose E &#x3E; 0
t x 

-

so small that the set

~ = { (t, x) E Q; - e  t  e and (t,x) is in the
e

. 

past P-dependence domain of (e~O)}

is compact in Q . . If S is a closed embedded characteristic hypersurface for

P in 0 then there are conormal (Lagrangian)solutions of Pu = 0 associated to S, i.e.

u E This latter space is defined directly below, in § 2, and is just the
* *

space denoted I (Q,N S) in H6rmander [2].

Theorem 1 : Let P, be as above and suppose Si. S and S are closed
- 

e 
- 1 2 3

embedded characteristic hypersurfaces for P, each passing through 0 with

the three normals independent. Suppose

is a bounded conormal solution of the linear equation and c &#x3E; 0 is chosen

small enough. Then to f E x 1R) with support in [- Í ,00) x IRn x R
2 

"

there corresponds 8 &#x3E; 0 such that whenever s 8 there exists a unique
00

distribution u E L (r2 ) satisfying
e
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It may seem strange to have such an existence result for the continua-
00

tion, as a solution of the non-linear wave equation (1), of data with an L bound.

It should be noted that there is considerable regularity hidden in (5), although

by no means enough for standard Sobolev estimates to apply. The analogous result

with four or more hypersurfaces is probably not correct, more regularity on u 
0

may be required.

2. ONE WAVE

The simplest case of Theorem 1 is when there is no interaction,
00

uo E L ,in (5). The regularity properties of the solution are then

readily determined, and more specific results are easily obtained. Recall the

subspace of polyhomogeneous, or classical, distributions Ih (Q, s) c I(~,s), for

a hypersurface S. Here if u E I(Q,S) then u E Ih(~,S) if near each s E S in local

coordinates x 1 ,...,X P in which S is given by x 1 = 0 for any M E N

with the u. quasi-homogeneous
J

and U . a polynomial in n (t) .
3

I Theorem 
2 : Let P, 0, QE’ , S be as in Theorem 1 and suppose u E satisfiesI - 

c 1 c

for some x IR) If e &#x3E; 0 is small enough, and u E in t  - e/2
c

it follows that u E S ) , ’ - int Q ; if u E ’S 1 in t  -e/2 thenle y hel
u E "

To illustrate the proof of this elementary result, and Theorem 1,

consider the s ecial case P - P - 2 the constant coefficient wave o erator.consider the special case P = P = D2 - A , the constant coefficient wave operator.E t n-1
One can take E arbitrary in Theorem 2 for some (i) E so

suppose

Returning to (2) look for u satisfying
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Thus, u o = H(t- x.w) , set u1 - u - uo with u the putative solution to (10), which

becomes

00

where E is the forward fundamental solution of p . Given a solution Ul E L it
+ . E 1

follows from (11) that u E H ((-oo,2]xR). For simplicity setting w = (1, 0, ... o )1 c

u satisfies the conormal estimates
o

x’ I = (x2,...,xn). Using the Lie algebra of vector fields 1r generated (as a C -module
2 n 

by V1 = )(D - D ) V =D +D , w. =D j 2, and the commutation
relation 

t 
I 

t 
I J 

~

it follows directly from (11) and (12) that V k,p,a’

Fixing r &#x3E; 
n+ 1 

for . l... integer, 1Fixing r &#x3E; 2 , for simplicity an integer, let

and (14) holds for k+p+ ]a’]  r} ,

which is a Hilbert space with the obvious norms based on the estimates (14). Moreover
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The multiplicative properties discussed in § 3 below show that

is a bounded map and (11) is a contraction on the unit ball in H (r) for 6 small

enough.

It is clear that the solution obtained in this way to (10) is conormal

since the estimates(14) hold. That it is polyhomogeneous follows from the direct

construction of a formal solution ; thus the solution of (10) has an expansion

of the form

with c. E COO (IRn x Sn 1 ) ) well-defined in x.w -- 2 (always for I  8) and
J

satisfying non linear transport eauations .

Comparison with the linear case f(t,x,u) = V(t,x)u makes the status of (1) as

a non linear potential problem more evident.

§ 3. CONORMAL RINGS

On a Coo-manifold X let be a linear space of real vector

fields with the properties :

(20) 1J is locally finitely generated as a C 00 -module.

More explicitly (20) requires that each point x E X have a neighbourhood Q such

that for some finite set c yr
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Given such a Lie algebra of vector fields one can define spaces of

distributions regular in the directions of1f

for s E lR. In particular the spaces of V -regular distributions are given by

For nonlinear differential equations the important property of these spaces is

their behaviour under pointwise multiplication. Set

Proposition 1 : For any k,s &#x3E; 0 and any 11 satisfying (18) , (19) and (20)

LcoI 
(k) 

HS (x ,11) is a ring and if f E COO (X,Rffi) then
(k) loc

00

These spaces are all local and they are all C -modules. For each x E X set

The Sobolev embedding theorem implies :

Proposition 2 : If 11 satisfies (18), (19) and (20) then each 5Z E X has a neigh-

bourhood Q such that provided k &#x3E; dim V-/2 , s &#x3E; (dim X - dim 9-)/2
x x

i.e. the L bound is automatic.

The support is the closed set

The most interesting cases here arise from tangency to C~-varieties. Thus,
. suppose :
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is a finite union of embedded (but not necessarily closed) submanifolds

S. 4X. Set

~ is said to be of finite type if ’~(~) satisfies (20), (18) and (19) being

automatic, and provided in terms of (26)

For such an ~~ of finite type set

(the set of common zeroes of all the vector fields in !7B as linear functions
*

on the cotangent fibres).Put M = T X B 0 and set

Then -$ is said to be microloc411y complete if, locally,

a type of irreducibility condition. For ~ of finite type let ~(~) c T 1 (X) be the
p

space of properly supported pseudodifferential operators characteristic on N ~ , , that

is

Proposition 3 : If 4 is of finite type then -,* is microlocally complete if and

only if
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Example : If are closed immersed hypersurfaces meeting and

self-intersecting independently, i.e. with all normals independent at each point

of intersection or self-intersection, then the variety 13 consisting of all Hk
and all intersection and self-intersection submanifolds is a microlocally complete
00 

, , 

C -variety of finite type.

§ 4. P-COMPLETENESS

If P is a linear differential operator of order m, with principal symbol

p then a submanifold S is characteristic for P if

For C~-varieties a more general notion is useful. If .4 is of finite type it

will be said to be characteristic for P if

*

is a finite union of Lagrangian submanifolds. With E(p) = {p = 0} CM =T XB0

set

where it is assumed that P is of real principal type so that E (p) is a manifold,

and (31) holds. Then ’S is said to be P-complete (characteristically complete in

[3] ) if it is characteristic for P and

locally in E (p) .

Proposition 4 : If P is a linear differential operator of order m and real

principal type and is a C varietv of finite type which is P-complete,
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Examples : Suppose P is a strictly hyperbolic operator of second order then

(34) 18 = S a characteristic hypersurface is P-complete.

If Sit S2 are two characteristic hvpersurfaces meeting transversally (independently)

then 

2 - .

then

If S is characteristic for P and x E S let K be the characteristic cone of P

with pole X, then near x

Some important examples of varieties which are not P-complete include for S1, S2 as
in (35), x E S n S2

and similarly

when S2 and S3 are characteristic hypersurfaces meeting independently. In

fact (37), (38) are not even characteristic, it is necessary in the case (38) to

add the characteristic surface emanating from S3, a conic surface S4*
00 

4

However, even the resulting C variety with eleven component manifolds :

and cyclic permutations in 1, 2, 3, S4 B (S1 U S2 U S 3 ),

whilst characteristic is not P-complete.
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’Theorem 3 : Let P be a striclty t-hyperbolic operator of second order in a

neighbourhood gj of 0 E JR x IRn . , Suppose - is a P-complete Coo-variety of
t x

finite type and 0 E S. If u E satisfies

then u E for some neighbourhood 1 of 0.(k loc

The proof of this general result follows that of Theorem 2, outlined

above in a special case, with due allowance for the replacement of (13) by (33).

§ 5. TWO WAVES

Theorem 3 applies to the variety (35) and hence to the circumstances of

Theorem 1, when one of the hypersurfaces , S3’ carries no singularities in (5).

Thus in that case the solution to (6) is conormal with respect to -8 generated by

s1 and S2* The existence part of Theorem 1 follows by judicious use of the same

estimates. Consider more refined questions along the line of Theorem 2. Thus, taking

in (35), what are the polyhomogeneous elements of IHS (X, ;) ?
loc

surfaces meeting transversally then u E I HS (X,3) if for any s’ there is a
h loc

decomposition

Theorem 4 : Under the hypothesis bf Theorem 3, suppose -3 is given by two

transversal closed characteristic hypersurfaces through 0. If (40) holds for

and u E L ooIh Hoc ( S1, ) in t  0 , u E I Hs (Q’,4) for some neighbourhoodh loc h loc
S’ of 0 .
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More specifically still consider the generalization of (10) :

Then, as before, there is a unique solution for 161  ~ , 6 &#x3E; 0 depending on

f ~ a and b.

Proposition 5 : If 6’ &#x3E; 0 is small enough and 161  6 the solution to (42) is

00

piecewise C , with all derivatives bounded, in each of the four regions

(assuming w 2) )

L

In fact int-x.w 1  0, t - x. w2 0 u vanishes by finite propagation
speed. When the arguments are of opposite sign one of the waves has not arrived

so the analysis for one wave can be applied. In the region where both signs are

positive one can use the conormal estimates above to show that only the two

characteristic variables are important, the others being essentially parameters.

This reduces the analysis to that of a wave equation in two variables where the

traditional iteration methods leading to the construction of the Riemann

function yield the regularity of u.

§ 6. THREE WAVES

As noted above the full characteristic variety, (39), corresponding to

three independent characteristic hypersurfaces is not P-complete. The commutator

methods used above do not therefore apply directly. One can view the difficulty

as being that I(X, ) 3 ) is too large. To obtain a more appropriate space the
3q

components of S q need to be separated to some degree. This is most readily done
through the introduction of polar coordinates around s 1 fl s 2 fl S , i.e. by

blowing-up this submanifold. In this way X = Q in Theorem 1 is replaced by a

manifold with boundary
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which is a diffeomorphism of X’ B 9X’ S2 n S3) and covers

S1 fl s2 fl S3 by aX’, as a 2-sphere bundle. All the hypersurfaces and other

components of e qlift to form a C -variet y ¿S’ in 2 X’ . Let I(k)L2(X’1’) be the

conormal spaces on X of where L is computedconormal sdaces on X of elements lifting into 
() 

L (X where L is computed

with respect to the measure in polar coordinates.

I Theorem 5 : Under the hypotheses of Theorem 1 the solution, u, to (6) lies in

1002 
the space L L (X, -B t ) .

Again it is the estimation of this type which enables one to prove the

existence result in Theorem 1.

The proof of Theorem 1 proceeds by radial decomposition of the solution.

Consider the structure of ’, in each fibre above S h S D 5 3 :

The region outside S4 has not been influenced by the most degenerate surface

S1 fl S3. The estimates, obtained by commutation on the solution can therefore

be applied in weighted L2-spaces, outside any conic neighbourhood of S . Using’ 4

a radial cut off in such a conic neighbourhood localizes the solution near S 4 IFJ 

4

excluding intersections of the hypersurfaces Si. S2 and S3. By further radial

decomposition this allows the commutation method to be applied to the P-complete

variety (36), consisting of the cone S4andofone of the hypersurfaces S1, s , S3 . *
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