SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

R. BEALS

Problèmes inverses pour des équations différentielles sur la droite

Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983), exp. nº 1, p. 1-12

http://www.numdam.org/item?id=SEDP_1982-1983_A1_0

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1982-1983, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél. (6) 941.82.00 - Poste N° Télex : ECOLEX 691596 F

SEMINAIRE GOULAOUIC-MEYER-SCHWARTZ 1982-1983

PROBLEMES INVERSES POUR DES EQUATIONS DIFFERENTIELLES SUR LA DROITE

par R. BEALS

Exposé n° I 19 Octobre 1982

·		

Le problème inverse pour un opérateur

(1)
$$P = D^{n} - q_{n-2}(x)D^{n-2} - \dots - q_{0}(x), \quad D = -i \frac{d}{dx}, \quad n \geq 2,$$

est en effet plusieurs problèmes : (i) déterminer quels renseignements minimaux (spectres, comportement asymptotique en x des fonctions propres) fixent les coefficients $\mathbf{q}_{\mathbf{j}}$; (ii) charactériser ces renseignements parmi les suites ou les fonctions arbitraires ; (iii) chercher une recette pour reconstruire les $\mathbf{q}_{\mathbf{j}}$ à partir de ces renseignements.

Ces problèmes ont été abordés surtout dans le cas auto-adjoint. Sur un intervalle $\underline{\text{fini}}$ le problème (i) a été résolu par Borg [3] (n = 2), Leibenzon [9], [10] (n = 2m) : il suffit de connaître les spectres de n problèmes avec conditions au bord auto-adjointes. Le problème (ii), n = 2 a été résolu récemment par Trubowitz. Sur la demi-droite \mathbb{R}_+ (cas d'intérêt pour la mécanique quantique) les problèmes (i)-(iii) ont été résolus par Gelfand-Levitan [7], Maréenko [11], (n = 2). Sur la droite \mathbb{R} les problèmes (i)-(iii), n = 2, ont été résolus par Kay-Moses [8], Faddeev [6], Deift-Trubowitz [5]. Notons ici que l'intérêt du cas \mathbb{R} a été fortement augmenté par la découverte des liens avec des équations d'évolution non linéaires (KdV, Boussinesq,...) : la méthode dite de scattering inverse ; voir des articles dans [4].

On esquisse ici des résultats sur $\mathbb R$ dans le cas général : $n \ge 2$, P non nécessairement auto-adjointe. C'est la suite des travaux avec R. Coifman [1] , [2]. Pour fixer les idées on considère le cas représentative n=3. On commence avec le problème spectral $Pu=z^3u$ ($z\in \mathfrak C$) réduit au système matriciel

$$D\psi(\mathbf{x},\mathbf{z}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ z^3 & 0 & 0 \end{pmatrix} \psi(\mathbf{x},\mathbf{z}) + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ q_0 & q_1 & 0 \end{pmatrix} \psi(\mathbf{x},\mathbf{z})$$

$$= J_z \psi(x,z) + q(x) \psi(x,z), \qquad \psi(.,z) : \mathbb{R} \to M_3(\mathfrak{C}).$$

On cherche ψ de la forme $\psi(x,z) = m(x,z) \exp(iz J)$ où

(3)
$$J = \begin{pmatrix} \alpha & O_2 & O \\ O & \alpha^2 & O \\ O & O & 1 \end{pmatrix} , \qquad \alpha = \exp\left(\frac{1}{3} \ 2 \ \pi \mathbf{i}\right)$$

Alors (2) est équivalente à

$$Dm = J_z m - z m J + q m = J_z m + q m.$$

Quand $q \equiv 0$ on a une solution $m(x,z) = \Lambda_z$,

$$\Lambda_{z} = \begin{pmatrix} 1 & 1 & 1 \\ \alpha z & \alpha^{2} z & z \\ \alpha^{2} z^{2} & \alpha^{z} z^{2} & z^{2} \end{pmatrix}$$

On impose une normalisation

(5)
$$m(x,z)$$
 bornée en x , $m(x,z) \rightarrow \Lambda_z$ quand $x \rightarrow -\infty$.

On dénote par \(\Sigma \) l'ensemble

$$\Sigma = \{z \in \mathbb{C} : \arg z = \pm \pi/\sigma, \pm \pi/2, \pm 5\pi/\sigma\}.$$

<u>Proposition</u>: Soit $\int \| q(x) dx < \infty$. Il existe un ensemble borné, discret $D \subset \mathbb{C} \setminus \Sigma$ telle que (a) le problème (4), (5) a une seule solution pour chaque $z \in \mathbb{C} \setminus (\Sigma \cup D)$; (b) pour chaque $x \in \mathbb{R}$ la solution m(x,.) est holomorphe sur $\mathbb{C} \setminus \Sigma$. En plus, $m(x,z) \to \Lambda_z$ quand $z \to \infty$.

En effet pour l'opérateur matriciel $\mathfrak{I}_{\mathbf{z}}$ ci-dessus on a des projecteurs

(6)
$$\pi_{z}^{\circ}$$
, π_{z}^{\pm} : $M_{z}(\mathfrak{C}) \to M_{z}(\mathfrak{C})$, $z \in \mathfrak{C} \setminus \Sigma$,

(7)
$$\pm \operatorname{Re}(i \mathcal{J}_{z}) \pi_{3}^{\pm} > 0 , \operatorname{Re}(i \mathcal{J}_{z}) \pi_{z}^{0} = 0 .$$

Alors (4), (5) est équivalent à

(8)
$$m(.,z) = \Lambda_z + K_{q,z} m(.,z)$$

où pour f : $\mathbb{R} \rightarrow M_3(\mathbb{C})$,

(9)
$$\kappa_{q,z} f(x) = i \int_{-\infty}^{x} \exp(i(x-y) J_{z}) [\pi_{z}^{o} + \pi_{z}^{-}] (q(y)f(y)) dy$$

$$- i \int_{x}^{\infty} \exp(i(x-y) J_{z}) \pi_{z}^{+} (q(y)f(y)) dy$$

La proposition se déduit assez facilement de l'équation intégrale de Fredholm (8) .

On veut regarder les singularités Σ U D de la solution m. Appelons la fonction $q = q_0 e_{31} + q_1 e_{32}$ générique si D est finie et si pour chaque $x \in \mathbb{R}$ m(x,.) a les propriétés : (i) sur chaque composante connexe Ω de $\mathbb{C} \setminus \Sigma$, m(x,.) a une extension continue au bord ; (ii) les pôles de m(x,.) sont simples et différentes colonnes ont des pôles distinctes.

On dénote par L_0^1 l'espace de Banach des fonctions matricielles q avec

$$\|q\|_{1,0} = \int (1+|x|)^4 \|q(x)\| dx < \infty$$
.

Théorème 1 : Dans L_0^1 , l'ensemble des points génériques contient un ouvert dense.

Par rapport au résultat analogue pour des systèmes du 1er ordre [1], [2], le point délicat est le mauvais comportement à l'origine des projecteurs (6) et, par conséquent, de l'équation (8). On remplace K par L avec meilleur comportement par la recette : dans (9) on remplace l'exponentielle par

$$\exp[i(x-y) \mathcal{J}_z] - (Id + i(x-y) \mathcal{J}_z)$$

et en revanche on ajoute le terme

$$i \int_{-\infty}^{x} [Id + i(x - y) \mathcal{J}_z] (q(y) f(y)) dy.$$

On cherche m, solution de (8), de la forme

(10)
$$m(x,z) = m_{Q}(x,z) + L_{Q,Z} m_{Q}(x,z).$$

Alors $m_{O}(x,z)$ doit être un polynôme dans x et on a un système d'équations linéaires avec paramètre z. Après encore un peu de travail on obtient le fait suivant. Supposons

Alors si on remplace q par ζq , $\zeta \in C$, la solution correspondante se comporte bien à l'origine sauf pour un ensemble discret des valeurs ζ .

De plus, avec (11) le caractère générique est <u>stable</u> : l'ensemble des q génériques satisfaisantes (1) est une ouverte.

Alors, pour démontrer le théorème 1, il suffit de montrer que les q génériques ayant support compacte sont denses. Si le support est compacte, l'équation (4) a pour chaque z complexe une seule solution m avec m $\equiv \Lambda_z$ pour x << 0. La

solution m doit avoir la forme

$$m(x,z) = m_{O}(x,z)e^{ixz}J_{a}(z)$$
, $J = ad J$,

puisque $D_x(m_0^{-1} m) = z \mathcal{I}(m_0^{-1} m)$. Pour x >> 0,

$$m_{O}(x,z) = \Lambda_{z} e^{ixz J} s(z)$$
.

Les conditions (5) déterminent a sur chaque Ω_j (voir fig. 1). La condition à - ∞ implique que dans Ω_2 , par exemple :

$$a = \begin{pmatrix} 1 & 0 & * \\ * & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

Toujours dans Ω_2 , pour que m soit bornée à $+\infty$ il faut que

$$sa = \begin{pmatrix} * & * & 0 \\ 0 & * & 0 \\ * & * & * \end{pmatrix}$$

Une telle a(z) existe si et seulement si

$$s_{22}(z) \neq 0$$
, $det \begin{pmatrix} s_{22}(z) & s_{12}(z) \\ s_{21}(z) & s_{11}(z) \end{pmatrix} \neq 0$.

En regardant des petites perturbations de q et en utilisant l'analyticité, on montre que les q génériques sont denses.

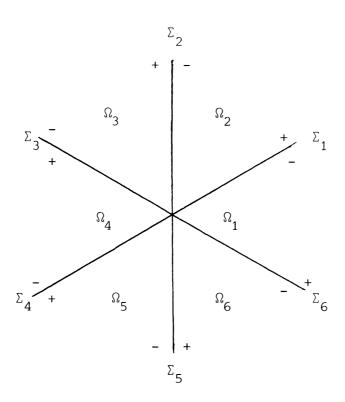


Figure 1

Sur chaque rayon Σ_k la solution m qui correspond à un $\,$ q générique a des limites m $\,$ (fig. 1). Celles-ci doivent être liées par

(12)
$$m^{+}(x,z) = m^{-}(x,z) \ell^{i_{X}z} v(z)$$
.

La fonction v est continue sur chaque rayon Σ_k , avec limite v_k (O) à l'origine et limite I à l'infini. Les limites à l'origine sont liées par

(13)
$$v_1(0)v_2(0)...v_6(0) = I$$
.

Sur Σ_2 , v a la forme

(14)
$$v = \begin{pmatrix} 1 & a & 0 \\ b & c & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $0 \neq c(z) = 1 + a(z)v(z)$,

et sur Σ_5 <u>l'inverse</u> de v a cette forme. La multiplication par α envoie Σ dans Σ et on a une symétrie

(15)
$$\mathbf{v}(\alpha \mathbf{z}) = \pi \mathbf{v}(\mathbf{z}) \ \pi^{-1} \ , \qquad \mathbf{z} \in \Sigma$$

qui correspond à la symétrie évidente de m :

$$m(x,\alpha z) = m(x,z) \pi^{-1}$$

οù

$$\pi^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

On déduit alors la forme de v sur Σ_k , k = 1,3,4,6.

On cherche une relation analogue à (12) aux points de D :

(17)
$$\operatorname{Res}[m(x,.);z] = \operatorname{P.f}[m(x,.);z] e^{xz} \operatorname{J} v(z), \quad z \in D.$$

Pour l'ensemble ouvert des a génériques construit ci-dessus, on a (17), avec

$$v = \begin{pmatrix} 0 & 0 & 0 \\ * & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{où} \quad \begin{pmatrix} 0 & 0 & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} , \quad z \in \Omega_2 \cap D.$$

(Dans Ω_{ς} on a les transposés). On a αD = D et encore une symétrie

(19)
$$v(\alpha z) = \alpha \pi v(z) \pi^{-1}, z \in D$$

d'où l'on déduit les formes sur Ω_k , k = 1,3,4,6 .

Enfin, soit N_j(k) le nombre des pôles de la colonne j de m qui se trouvent dans Ω_k ; par exemple, d'après (17), (18), N₂(2) = O . Soit c_k(z) l'unique élément de la diagonale de v(z), z $\in \Sigma_k$, qui n'est pas \equiv 1. Alors on a

(20)
$$N_{1}(2) - N_{3}(2) + N_{2}(5) - N_{1}(5)$$

$$= \frac{1}{\pi} \int_{\Sigma_{2}} d(\arg c) + \frac{1}{\pi} \int_{\Sigma_{5}} d(\arg c),$$

avec intégration de l'origine vers l'infini. (Grâce aux symétries (15), (19), il y a encore deux équations, superflues, du même type).

Appelons la fonction v (y compris son domaine Σ U D) les <u>données de scattering</u> du point générique q $\in L^1_O$. Notons que v est déterminée aussi par le comportement <u>asymptotique</u> en x (soit à $-\infty$, soit à $+\infty$) des solutions m sur Σ U D. En plus, on peut déterminer D (mais non pas v sur D) à partir du comportement asymptotique à $+\infty$ de m sur Σ .

L'application $q \mapsto v-I$ est en quelque sorte une version non linéaire de la transformée de Fourier. En effet, on a des propriétés analogues : soit q assez régulière (resp. assez décroissante à l'infini), alors v-I est assez décroissante à l'infini (resp. assez régulière).

$\underline{\text{Th\'eor\`eme 2}} \quad : \quad \text{L'application q} \, \rightarrow \, \text{v est injective}$

En effet, si q' et q" ont les mêmes données de scattering v, on peut en déduire pour les solutions m', m" que m'(x,.) m"(x,.) $^{-1}$ est holomorphe entière en z et tend vers I à l'infini, d'où m' \equiv m" et alors q' \equiv q".

On est (enfin !) prêt à aborder le vrai problème inverse. Nous trouverons que les propriétés au-dessus caractérisent (génériquement) les données de scattering du point de vue algébrique; du point de vue analytique on perd un peu.

Soit $D \subset \mathbb{C} \setminus \Sigma$ un ensemble fini tel que $\alpha D = D$. Définissons DS(D), l'ensemble des données de scattering formelles avec domaine $\Sigma \cup D$. Ce sont les fonctions

$$v = \Sigma \cup D \longrightarrow M_3(\mathbb{C})$$

qui satisfont les conditions citées au-dessus. En plus on impose une condition de continuité et de décroissance plus forte : pour chaque k, la restriction de v-I sur $\Sigma_{\mathbf{k}}$ appartient à un espace de Sobolev avec poids

(21)
$$(1 + |z|)^{3} [v(z) - I] \in H^{1}(\Sigma_{k}).$$

L'espace DS(D) est d'une façon naturelle un espace de Banach.

Les fonctions matricielles ψ , m au-dessus sont déterminées uniquement par leurs premières lignes. Il convient ici de chercher une fonction vectorielle

$$\underline{\mathbf{m}} = (\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3) : \mathbb{R} \times (\mathbb{C} \setminus (\Sigma \cup D)) \rightarrow \mathbb{C} ,$$

holomorphe en z dans $\mathbb{C} \setminus (\Sigma \cup D)$ et méromorphe sur $\mathbb{C} \setminus \Sigma$, telle que les analogues des équations (12), (17) soient vrais. On impose aussi la condition à l'infini

(22)
$$\underline{m} \rightarrow \underline{1} = (1,1,1)$$
 quand $z \rightarrow \infty$.

S'il existe pour chaque $x \in \mathbb{R}$ une seule solution m(x,.), on dit que $v \in DS(D)$ est <u>générique</u>. Le problème inverse nous amène à poser deux questions : Qu'est-ce qu'on peut dire de l'ensemble des points génériques ? Est-ce que <u>m</u> est la solution d'une équation différentielle en x?

Théorème 3 : Les points génériques sont un ensemble ouvert dense dans DS(D). Si v est générique et $\underline{m} = (m_1, m_2, m_3)$ la solution correspondante, soient

$$\psi_{j}(x,z) = m_{j}(x,z)e^{i\alpha^{j}xz}$$
 , $j = 1,2,3$.

Alors il existe des fonctions q_0 , q_1 , uniques, avec q_0 , q_1 , Dq_1 continues et décroissantes comme $|x|^{-1}$ a l'infini, telles que

$$D^{3}\psi_{j} = z^{3} \psi_{j} + q_{1}D\psi_{j} + q_{0}\psi_{j}$$
, $j = 1,2,3$.

Comme pour le problème direct, si v-I est plus régulière (resp. plus rapidement décroissante), alors q est plus rapidement décroissante (resp. plus régulière).

Esquissons très rapidement la démonstration du théorème 3. Supposons d'abord que D soit vide.

On écrit (12) comme condition de saut additive :

(23)
$$\underline{\underline{m}}^{+}(x,z) - \underline{\underline{m}}(x,z) = \underline{\underline{m}}^{-}(x,z) e^{ixz} \mathcal{I}_{w(z)}, \quad w = v- I$$

Tenant compte de la condition à l'infini (22) on doit avoir

(24)
$$\underline{\mathbf{m}}(\mathbf{x},\mathbf{z}) = \underline{\mathbf{1}} + \frac{1}{2\pi \mathbf{i}} \int_{\Sigma} (\zeta - \mathbf{z})^{-1} \, \mathbf{m}^{-}(\mathbf{x},\zeta) \, \mathbf{w}(\mathbf{x},\zeta) \, d\zeta , \quad \mathbf{z} \notin \Sigma ,$$

 $w(x,z) = \exp ixz (w(z))$. On considère (24) comme équation intégrale singulière sur Σ . Celle-ci a une et une seule solution si

(25)
$$w_{k}(0) = 0$$
, $\|\omega\|_{H^{1}(\Sigma_{k})} < \delta$, $1 \le k \le 6$.

Pour le cas général, on considère d'abord $x \leq 0$, et on cherche \underline{m} de la forme

(26)
$$\underline{\mathbf{m}}(\mathbf{x},\mathbf{z}) = \widetilde{\underline{\mathbf{m}}}(\mathbf{x},\mathbf{z}) e^{i\mathbf{x}\mathbf{z}} \mathbf{J}_{\mathbf{u}(\mathbf{z})}$$

On peut trouver u rationnelle dans chaque $\ \ \Omega_{\mbox{$k$}}$, tendant vers I à l'infini, telle que

$$\widetilde{\mathbf{w}} = \mathbf{u}^{-} \mathbf{v} (\mathbf{u}^{+})^{-1} - \mathbf{I}$$

a les propriétés (25). Le problème original pour \underline{m} devient un problème analogue pour $\underline{\widetilde{m}}$. Pour $\underline{\widetilde{m}}$ on doit créer les singularités souhaitées sur D et en plus on doit tuer les singularités qui viennent de la fonction rationnelle u, mais en revanche sur Σ on a des données propices. On se ramène à une équation pour \underline{m} sur Σ U D de la forme

(27)
$$\underline{\widetilde{\mathbf{m}}} = \underline{\mathbf{1}} + \mathbf{C} \widetilde{\mathbf{m}} + \mathbf{C} \underline{\widetilde{\mathbf{m}}} = \underline{\mathbf{1}} + \mathbf{C} \underline{\widetilde{\mathbf{m}}}$$

où C est un opérateur intégral avec norme < 1 et C $_{
m d}$ est un opérateur de rang fini.

Pour x \geqslant O on utilise (20) (pour la première fois) pour transformer les données afin qu'ils correspondent formellement aux fonctions m $^{\#}(.,z)$ avec la normalisation à + ∞ : m $^{\#}(x,z)$ \rightarrow Λ_z quand x \rightarrow + ∞ . Cela fait, on suit la même route qu'auparavant.

Cet argument implique que l'ensemble des points génériques est un ouvert dans DS(D). Pour la montrer dense on considère v-I avec support compact. Puisque $C_{\stackrel{\cdot}{d}}$ ci-dessus est de rang fini, la question de la résolubilité de (27) se réduit à un espace de dimension finie, et on jour encore avec l'analyticité.

Jusqu'ici, on n'avait pas besoin des conditions de symétrie (15), (19). Ces conditions impliquent

(28)
$$\underline{\mathbf{m}}(\mathbf{x},\alpha\mathbf{z}) = \mathbf{m}(\mathbf{x},\mathbf{z}) \ \boldsymbol{\pi}^{-1}$$

Si f est unefonction vectorielle qui satisfait (28) et ne dépend pas de z, alors f est de la forme $g(x)\underline{1}$, g scalaire. Cette observation permet enfin de dégager les fonctions scalaires q_0 , q_1 en prenant des dérivées de \underline{m} où de $\underline{\widetilde{m}}$ = $(\mathrm{Id}-\mathrm{C})^{-1}\underline{1}$. (C'est ici qu'on utilise (21) au lieu de la condition plus faible : v - I \in H¹)

Pour terminer, signalons qu'on peut caractériser les opérateurs auto-adjoints à partir de leurs données de scattering. Pour n = 3 posons

$$r = \begin{pmatrix} 0 & 0 & \alpha^3 \\ 0 & \alpha^2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Alors l'opérateur est auto-adjoint si et seulement si

(29)
$$v(\overline{\alpha z}) = rv(z) r^{-1}, z \in \Sigma ;$$

(30)
$$v(\overline{\alpha z}) = -\overline{\alpha}rv(z) r^{-1}, \quad z \in D.$$

BIBLIOGRAPHIE

- [1] R. Beals, R. Coifman: Séminaire Goulaouic-Meyer-Schwartz 1980-81, exp. 22; 1981-1982, exp. 21, Ecole Polytechnique, Palaiseau.
- [2] R. Beals, R. Coifman: Scattering and inverse scattering for first order systems, à paraître dans Comm. Pure Appl. Math.
- [3] G. Borg: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe.

 Bestimmung der Differentialgleichungen durch die Eigenwerte, Acta Math.

 78 (1946), 1 96.
- [4] R. K. Bullough, P. J. Caudrey, eds : <u>Solitons</u>, Topics in Current Physics no 17, Springer, Berlin, 1980.
- [5] P. Deift, E. Trubowitz: Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), 121-251.
- [6] L. D. Faddeev: Properties of the S-matrix of the one-dimension Schrödinger equation, Trudy Mat. Inst. Steklov 73 (1964), 314-333; Amer. Math. Soc. Translations, ser. 2, 65, pp. 139-166.
- [7] I. M. Gelfand, B. M. Levitan: On the determination of a differential operator from its spectral function, Izvest. Akad. Nauk 15 (1951), 309-360; Amer. Math. Soc. Translations, Ser. 1, pp. 253-304.
- [8] I. Kay, H. E. Moses: The determination of the scattering potential from the spectral measure function, III, Nuovo Cimento 10 (1956), 276-304.
- [9] Z. L. Leibenzon: An inverse problem of spectral analysis of ordinary differential operators of higher order, Trudy Mosk. Mat. Obšč. 15 (1966), 70-144; Trans. Moscow Math. Soc. 15 (1966), 78-163.
- [10] Z. L. Leibenzon: Spectral resolutions of systems of boundary value problems, Trudy Mosk. Mat. Obšč. 25 (1971), 15-58, Trans. Moscow Math. Soc. 25 (1971), 13-62.

[11] V. A. Marčenko : The construction of the potential energy from the phases of the scattered waves, Doklady Akad. Nauk. SSSR 104 (1955), 695-698.

SEMINAIRE GOULAOUIC-MEYER-SCHWARTZ 1982-83

Exposé nº I - R. BEALS

ERRATA

p.I.1 ligne 5 : Au lieu de : charactériser , lire : caractériser

p.I.1 ligne 10 : Au lieu de : "il suffit de connaître les spectres de n problèmes

avec conditions au bord auto-adjointes."

Lire : "pour n = 2 il suffit de connaître les spectres de

2 problèmes aux limites auto-adjoints."

