SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

B. MALGRANGE

Transformation de Fourier géométrique et microlocalisation

Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983), exp. nº 12, p. 1-5

http://www.numdam.org/item?id=SEDP_1982-1983_A12_0

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1982-1983, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél. (6) 941.82.00 - Poste N° Télex : ECOLEX 691 596 F

SEMINAIRE GOULAOUIC-MEYER-SCHWARTZ 1982-1983

TRANSFORMATION DE FOURIER GEOMETRIQUE ET MICROLOCALISATION

par B. MALGRANGE

Exposé n° XII

Le travail que je résume brièvement ci-dessous a été fait en collaboration avec J. L. Brylinski et J. L. Verdier. Cf. [B1] et [B-M-V].

1. TRANSFORMATION DE FOURIER DANS LE DOMAINE REEL

Notations : Y désigne un espace localement compact paracompact de dimension finie; $E \xrightarrow{\pi} Y$ un fibré vectoriel réel de rang constant r sur Y, qu'on supposera orienté pour simplifier; $E \xrightarrow{\pi'} Y$ désigne le fibré dual. Enfin A est un anneau noethérien (en pratique $A = \mathbb{C}$ ou \mathbb{Z}).

Soit $G \in D(E,A)$; on dit que G est <u>homogène</u> si les \underline{H}^iG sont constants sur les rayons de E, i.e. les orbites de l'action de \mathbb{R}^+_* sur $E \setminus Y$; on notera $D_{hom}^i(E,A)$ la sous-catégorie pleine des complexes homogènes de D(E,A).

Le foncteur \mathcal{G}^+ , qui va de D $_{\mathrm{hom}}$ (E,A) dans D $_{\mathrm{hom}}$ (E',A) s'appelle "transformation de Fourier géométrique". Ses principales propriétés sont les suivantes

(1.3) (Formule d'inversion). On a un isomorphisme de foncteurs

$$\mathcal{G}^- \circ \mathcal{G}^+ G \simeq G [-r] \qquad (G \in D_{hom}(E,A))$$

(1.4) \mathscr{G}^+ commute aux changements de base. Pour $\xi \in E'$, $\pi'(\xi) = y$, $\mathscr{F}_{G_{\xi}}$ se calcule de la manière suivante : posons $E_{y} = \pi^{-1}(y)$, et soit Z_{ξ} la famille de supports dans E_{y} formée des cônes fermés Z tels qu'on ait $Z_{\xi} = \{Y\} \subset \{X \in E_{\xi} \mid \langle X, \xi \rangle > 0\}$. On a alors un isomorphisme canonique $(\mathscr{F}_{G})_{\xi} = R\Gamma_{Z}(G|E_{y})$.

Cette formule est à comparer avec [S.K.K.], chap. 1, prop. 1.2.3; elle montre essentiellement que la transformation de Fourier géométrique est la restriction au cas homogène de la "microlocalisation à la Sato".

(1.5) Soit
$$u : E \to F$$
 un morphisme de fibrés vectoriels sur Y; pour $G \in D_{hom}(E,A)$, on a $\mathcal{F}^+(Ru_!G) = {}^tu^*\mathcal{F}^+G$

Cette formule résulte par diagram-chasing de la définition de ${\bf f}^+$. Une conséquence immédiate et importante est la suivante :

Proposition (1.6): Soit
$$\overline{\omega}$$
: $E \times E' \to \mathbb{R} \times E'$ l'application $(\mathbf{x}, \xi) \to (\langle \mathbf{x}, \xi \rangle, \xi)$, et soit p la projection $E \times E' \to E$; alors on a Y
$$\mathcal{F}^+G = \mathcal{F}^+_{E'} \mathbb{R}^{\overline{\omega}}_{[p]} \mathcal{F}^*_{G|_{\{1\}} \times E'}$$

(${\bf \mathscr{F}}_{{\bf E}}$ ' désigne ici la transformation de Fourier sur ${\bf E}' \times {\bf I\!R}$ considéré comme fibré vectoriel sur ${\bf E}'$).

Cette formule ramène le calcul de la transformée de Fourier au cas d'un fibré et même d'un fibré trivial, de rang 1.

Enfin, la définition de \mathcal{G}^+ et la formule d'inversion permettent immédiatement d'obtenir des formules d'adjonction et de dualité : en effet, pour $G \in D_{hom}^+(E,A)$, et $H \in D_{hom}^+(E',A)$, on a (dualité de Verdier)

$$\operatorname{Hom}(\operatorname{Rq}_{!}' \operatorname{q}' \operatorname{G}, \operatorname{H}) = \operatorname{Hom}(\operatorname{G}, \operatorname{Rq}_{*} \operatorname{q}'^{!} \operatorname{H})$$

d'autre part, la formule d'inversion montre que $\mathcal{F}^-[r]$ est un adjoint de \mathcal{F}^+ ; d'où un isomorphisme canonique (1.7) $\mathcal{F}^-H = Rq_*q'^!H[-r]$.

En permutant les rôles de E et E', et en utilisant la description classique : $q! = R\Gamma_D^! = R\Gamma_D^! = R\Gamma_D^! = R\Gamma_D^!$, on obtient qu'on a pour $G \in D^+_{hom}(E,A)$

(1.8)
$$\mathcal{J}^{\pm}G = Rp_{*}^{!} R\Gamma \qquad p \qquad G$$

(p' la projection $E \times E' \to E'$). Formule qui s'écrit aussi, avec les notations de (1.6).

(1.9)
$$\mathbf{\mathcal{J}}^{+}_{G} = \mathbf{\mathcal{J}}_{E}^{+} R \overline{\omega}_{*} p^{*}_{G} |_{\{1\} \times E'}$$

Il me paraît probable que l'isomorphisme entre les seconds membres de (1.6) et (1.9) est la flèche naturelle R $\bar{\omega}_{1} \rightarrow R\bar{\omega}_{*}$, mais je n'ai pas établi ce point.

Enfin, si A admet un complexe dualisant, par exemple si A est régulier, on a une théorie du complexe dualisant sur Y, E et E' (Verdier). Soit alors $G \in D_{hom}^-(E,A)$ et DG son dual ; on a

$$D R_{q'} q G = Rq'_* D q G = Rq'_* q' DG ;$$

d'où par (1.7) la formule

$$(1.10) D\mathfrak{G}^{+}G = \mathfrak{G}^{-}DG[r]$$

Indications sur les démonstrations

La seule formule qui demande du travail est la formule d'inversion (1.3) ; on peut l'établir sur E\Y et sur Y par un diagram-chasing à partir de la définition (1.2), ou encore en se ramenant aux calculs de [S.K.K.] chap. I, § 1,4, mais il y a une difficulté de recollement entre les deux résultats obtenus. On trouvera dans [B.M.V] une méthode qui évite cet inconvénient ; cette méthode est fondée sur une description plus générale de \mathcal{F}^{\pm} , qui s'applique aussi à des cas non homogènes.

2. TRANSFORMATION DE FOURIER DANS LE DOMAINE COMPLEXE

Je serai ici très bref , en me contentant pour l'essentiel de renvoyer à [B1] ,[V1] ,[V2] ; soit $E \xrightarrow{\pi} Y$ un fibré vectoriel complexe sur Y de rang r, et soit $E' \xrightarrow{\pi'} Y$ son dual complexe ; on remarque d'abord que E', muni de Re < .,.>, est le dual réel de E ; par suite \mathcal{F}^+ est une équivalence $D_{hom}(E,A) \to D_{hom}(E',A)$, dont un quasi-inverse est $\mathcal{F}^-[2r]$ (formule 1.3 ; on suppose choisie une racine de -1, i.e. une orientation de \mathbb{C} , ce qui oriente canoniquement E et E' ; autrement il faudrait rajouter des "twist à la Tate").

D'autre part, si $u: E \to F$ est un morphisme de fibrés C-vectoriels sur Y, les transposés réel et complexe de u coîncident ; on déduit alors de (1.5) l'analogue complexe de (1.6) :

(2.1) Soit
$$\overline{\omega}_{\mathbb{C}}: \mathbb{E} \times \mathbb{E}' \to \mathbb{C} \times \mathbb{E}'$$
 défini par $\overline{\omega}_{\mathbb{C}}(\mathbf{x}, \xi) = (\langle \mathbf{x}, \xi \rangle, \xi)$; pour $\mathbb{G} \in D_{hom}(\mathbb{E}, \mathbb{A})$, on a $\mathcal{F}^+ = \mathcal{F}^+_{\mathbb{E}}$ $\mathbb{R} \overline{\omega}_{\mathbb{C}} \cdot \mathbb{P}^+_{\mathbb{G}} = \mathbb{F}^+_{\mathbb{C}} \cdot \mathbb{P}^+_{\mathbb{G}} = \mathbb{F}^+_{\mathbb{C}} \cdot \mathbb{P}^+_{\mathbb{C}} = \mathbb{F}^+_{\mathbb{C}} = \mathbb{F}^+_{\mathbb{C}} \cdot \mathbb{P}^+_{\mathbb{C}} = \mathbb{F}^+_{\mathbb{C}} = \mathbb{F}^+_{\mathbb{C}} \cdot \mathbb{P}^+_{\mathbb{C}} = \mathbb{F}^+_{\mathbb{C}} = \mathbb{F}^+_{\mathbb{C}$

Soit $G \in D(E,A)$; on dit que G est monodromique si les $\underline{H}^{\mathbf{i}}G$ sont localement constants sur les orbites de l'action de C dans $E \setminus Y$. On déduit de (2.1) le résultat suivant

(2.2) si G est monodromique, \mathcal{F}^{\pm} G est monodromique.

On pose alors $\mathbf{f} G = \mathbf{f}^+ G$ r (ou $\mathbf{f}^- G[r]$, qui lui est ici isomorphe). Supposons maintenant que Y soit une <u>variété analytique complexe</u>, et E un fibré vectoriel holomorphe sur E. On dispose alors d'une notion de "faisceaux pervers" sur E, pour laquelle je renvoie à [B2]. Le résultat fondamental est le suivant :

Théorème (2.2) : Si $G \in D(E,\mathbb{C})$ est monodromique et pervers, $\mathscr{F}G$ est monodromique et pervers.

La démonstration se ramène, via (2.1) et un théorème d'Artin, au cas où $E = Y \times \mathbb{C}$; elle se fait alors en caractérisant les faisceaux monodromiques pervers en termes de $(\Psi, \Phi, \text{can, var})$ à la Deligne [S.G.A] , et en démontrant que \mathscr{F} est l'échange ($\Psi \to \Phi, \text{can} \leftrightarrow \text{van}$). Le même procédé de réduction au rang 1 montre aussi le résultat suivant (je renvoie à (B1) pour l'énoncé précis et la démonstration).

Théorème (2.3): Par la correspondance de Riemann-Hilbert ([K] [Me]), l'action de sur les faisceaux monodromiques pervers correspond à la "transformation de Fourier algébrique" (échange des opérateurs de multiplication et de dérivation dans la fibre).

3. SPECIALISATION ET MICROLOCALISATION GEOMETRIQUES

L'exposé oral comprenait quelques considérations sur ce sujet, pour les quelles je renvoie à $[V\,2]$.

BIBLIOGRAPHIE

- [B 1] J. L. Brylinski : Transformations canoniques, dualité projective, etc... (soumis à Astérisque).
- [B 2] J. L. Brylinski : Homologie d'intersection et faisceaux pervers, Séminaire Bourbaki, 1981-82, n° 585, Astérisque n° 92-93.

- [B.M.V.] J. L. Brylinski, B. Malgrange, J. L. Verdier : Note aux C. R. Acad Sc., à paraître.
- [K] M. Kashiwara : Systèmes holonomes et distributions tempérées, Séminaire Goulaouic-Schwartz 1979-80, exposé XIX.
- [Me] Z. Mebkhout : Une autre équivalence de catégories, à paraître dans Compositio Mathematica.
- [S.G.A.] Séminaire de Géométrie Algébrique 1967-69 (S.G.A. 7.2), Exposés n° 13 et 14, Springer Lecture Notes n° 340.
- [S.K.K.] M. Sato, M. Kashiwara, T. Kawai : Microfunctions and pseudodifferential equations. Springer Lecture Notes 287 (1973) p. 265-529.
- [V.1] J. L. Verdier : Spécialisation de faisceaux et monodromie modérée, Coll. de Luminy, Juillet 1981 (à paraître à Astérisque).
- [V.2] J. L. Verdier : Géométrie microlocale, à paraître.

**