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IX.1

Introduction In ~1~ 1 Kashiwara atx and Kawai made a far-recahing study of

holonomic systems. A basic result is Theorem 5.2.1. in [1] which
asserts that if is a holonomic Ê -module# where F= ex is the sheaf
of micro-local differential operators of finite order defined outside he

Oi:="

zéro-section of the cotangent bundle of X, then the extended sheaf E i f ?
contains a unique É -submodule 7?7 

reg 
which has regular singularities and

satisfies %i? 
reg 

= É Se 1n . The proof of this result is quite involvedreg g

and my aim is here to present the passage of the proof which appears in

Chapter 4 of ~1 . This part deals with prolongation properties of solutions
to over-determined systems which arise from a given holonomic E -module

whose support is the conormal to a hypersurface S in the base manifold.

In ~2~ Kashiwaraand Kawai offers a brief exposition of the proof too, so

here Section 2 only repeats the steps which are necessary in order to

understand how the proof is reduced to a spe cific problem about prolongations
of solutions to an overdetermined system.

Section 3-5 contains the detailed analyis which finishes the proof. 

presentation may appear to be quite different from the material in [1 1 ,
but actually all the essential methods are already given the diffé-

rence is that I have tried to avoid too much machinery based upon local

cohomology, to make the proof more accesible to the analysists.

The material in Section 6-8 contain proofs of warious results which

were used before. They can be studied independently of the preceeding

material, but of coure their content is motivated by the fact that it enable

us to prove the Reconstruction Theorem.

A Remark The actual proof of the Reconstruction Theorem contains more

results, see for example Theorem 4 ~ ~ .1. in ln -particular Kashiwara and

Kawai finds particular good filtrations on holonomic modules H.S. 

we refer to [iil for very interesting cominents about this.

Thé case of holonomic D-.modules. In this cas¢ leads to

the Reconstruction Theorem v/hich we zY 
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1. The case of 

Before we begin the micro-local analysis, it should be pointed out that

if we work with holonomie .9-modules, where is the sheaf of

differential operators with analytic coefficients, then the Reconstruction

Theorem can be attacsed in a quite différent way. This was for example

done shall briefly reoall how this goes.

First, let be the derived category of bounded sheaf-complexes on

X whose cohomology sheaves are constructible, î,e, they are locally constant

on a complex analytic Whitney stratification { and their stalks are

finite dimensional complex vector spaces.

For a single constructible sheaf T- , the following basic reault

holdop where we put 0- x to simplify the notations. 
using the

1.1. Theorem ÊWIJ( are sheaves of ÔÎmodules for each j o and

natural action by eP on a and each of them contains a distinguished

sheaf of -V-submodules whioh is holonomic and 00’ea D equals
j . J/ J

the Êxl-sheaf above.

This result was eosentially proved The sheaf is found

by the use of temperated cohomology as explained in It is aiso the

starting point for the proof of the isomorphism of D(X)~ and the derived
category of bounded complexes of à -modules whose cohomology

sheaves are holonomic and have R.S.

Well, even if Theorem Iole is quite intuitive since the D (bol -module
structure on thèse Êxi-sheaves is clearp the most convenient way to

express  , arise by the diagonal méthode To be précise, in the productJ

manifold X x X we let a be the diagonal and then we can consider the

der-ived functors of ~ and of respectively. A basis result is then

1.2. Grothendieck’s Comparison Theorem which asserts that if ~"

is a complex in D (X) then the canonical mapping from

it r- ( j into B g ( 5’ a ( ) is injective and its images

is ample enough to generate the hypercohomology sheaves
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"F 8) as JZ) -modules.
1.3. Remark Saying this, the 2 00 -module structure arises by Satole

cohomological description of of ;D &#x26; 1 Îoeo these sheaves on X are
n 

A 
n 

A

equal to the local cohomology sheaves n and n A respeotively,A M
where n = dim(X) and = x 2 ox xX îs the sheafof

holomorphic n-forms.

Using a formula from Verdier’s work in CIO] 0, we then have the isomorphism

Ir (1 &#x3E;?o», ~FPE) là when ’F is a constructible

sheaf, and using this isomorphism the holonomio j) -modules from Theorem
J

1.1. arise when we take the hypercohomology sheaves in the complex

1 ( ii Y&#x26;&#x3E; ~~)’
1.4. The case when -holonomic If ~ is a holonomic sheaf of

-modules, then are constructible sheaves for all J. This
r

was proved in [6]. It is then combined with the Biduality Formula which

asserts that ~7~ à holdea See [1J or [1 ,Theo-
rem 1.4.9.1 for a proof.

1 - 5 e A formula ’ for ~ reg 1a now aohieved. In faetp given the holonomic

-module the results in 2»2» and 2.4. imply that 1!1 reg is

found by oomputing 

We refer to J for a more detailed presentation of the material

given above.

1.6. Some Remarks Even though the methods above lead to a distinguished

holonomie eD-submodule of 9 it is not at all obvious that this sheaf has
R.S. in the sense of 13j . However, it is a consequence of the Reconstruction

Theorem, that the sheaf found in 1.5. has R.S. See for example Section 6-4

in 

j~7* Some explicit formulas Let us finish by saying that the

formulas above can be made explicite likere is an illuminating example.
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1.8. The case when 7JJ has pure dimension. In general , if a

holonomic $ -module we let be the sheaf of sections in M whose

supports are at most k-dimensional. Eaoh is then a holonomic

~-submodule of Î’f1, and the quotients have pure dimension

kt 1.e. dim(supp(~)) = k hold for any section in this sheaf.

If now is holonomic and has a pure dimension k, then the Biduality

Formula and the use of an associated spectral sequence gives

J.g. Proposition 2 an exact sequenoe

0 ( Éà)~( #X, O ) , 1 ) 
where k-2 .

See rll.Theorem 7-8# on page 74 for a similar result. The proof there
can be repeated to give Proposition 1.9. above.

From this, we then find 2p reg by intersecting with the distingui-
shead R.S, submodule of n-k ( (‘ )  (9 )  so this shows the

relevanrse of Theorem X.1. Of course, the fact that it suffioes to prove

the Reconstruction Theorem for the cP -sheaves x X( ) when F is
constructiblep is a conséquence of the isomorphism between D(X) o and

.10. The canonical filtration To finsh, we recall that the actual

proof in leads to the existence of a canonioally_ defined aood

filtration of a holonomic D -module with R.S. which may have topological

conséquences. See ~1~ and see Section 5-1 for the construction of

this good filtration.
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2. An outline of the proof

Following [1J we shall describe how the proof of the Reconstruction

Theorem is reduced to a study of a certain over-determined system. So let

X be a complex analytic manifold and let T (X) = T"(X) - T"(X) be the
complement of the zero-section of the cotangent bundle. Consider then*a

holonomic Fy-module 7H which is defined in some open and conic subset

-H- of The support of the sheaf 111 is then a conic Lagrangian

variety where ~ in general may have singular points. In any casel its

regular part 
reg 

is open and dense.
reg sing

2.1. The existence of ?P 
reg 

on À . Using the Classification Theorem20132013201320132013201320132013201320132013 reg - reg

for hol&#x3E;°°Enomic éi -modules with non-singular support, both the existence and
the unîqueness of 7r 

reg 
on -Il 

reg 
is easily proved. See rl:Section 1-31

for details.

2.2. The uniqueness of . On reg we find the unique É -submodule
00 

? which then satisfies P7 on Using Theorem 1.2.1. in
reg g reg reg

[j ] which may be regarded as a kind of Hartog’s Theorem for coherent

éi-modules, the uniqueness of »? re&#x26; on the whole Lagrangian variety
follows from its unioueness Of course, this 11niQuF"!ness is

reg

stated under the condition that we have found some coherent £, -submodule
V 00

of -,.S. and satisfies ÎÎlÎ JÔ . In fatt, then
-À’ = ere g holds on -/f reg . and the uniqueness of ik,4is a consequence of
the cited result, or more precisely of Corollary 1-2-3- in r which assel-ts:

2.3. Proposition Let 777 be holonomic and let be a holonomic

,(-C-submodule of and let Z _/É -i subvariety ’:.d. t1"-  

= dim(X). Then thé follo;,iing hold

f (N? //’ (1) ’ny locnilv ..- Î"’,Ô) "’’ic to 

/ ’ )... - ." ..., 1

(2) ,in;j s  F 1 ’-1 ,)» pmich belongs to to rr 1 i /1’ ’)

/ exists co on n j j i.. 0 _/É 1 s i t u-,, exists on i-., _.l..] Uc on ../1-..J-.... I "_’,-1..: ’-’IV.
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So for the proof of existence it is sufficient to prove that 

exists locally, i~e. in a small conic neighborhood of a given point Po on

To attain this we can assume has a xenenc position
sing 

’ . ’ -’ 

at the point ru, i.e. that the fiber is isolated in the conic Lagrangian

variety. More precisely we obtain this as follows

2-4- A geometric préparation First, symplectic algebra shows that

there exists a locally defined homogenous canonical transformation X at p
which maps the germ of -4 at p o onto another germ of a Lagrangian variety
at p 

o 
which has generic position. See rI :Section 1-6j for détails.

Using a contact transformation attached to this canonical transformation

we can then assume that -A from the start has generic position at p . See

for example fll.’-Theorem 6.1.3 and notice also that the contact transformation

is defined locally as explained in [11,Proposition 11.4- page 182]

2.5. The hypersurface ~(~/t) = S . From now on we assume that A has a

generic position at p . This implies that if n is the projection from T (x)
o

to the base manifold, then n(12nA ) = S is a hypersurface in X, where 11

is a small conic neighborhood of p .
o

In addition to this the equality x holds in a conic neighborhoodIn addition to this the equality .-/L-= 1 holds in a conic neighborhood

of where T~ == the closure of the smooth conormal variety T reg . The

proof is easy and we refer to il :Section 4-’?i for details. 
reg

2.6. The / -module locally we may assume that ?1 = 

20132013 
P 

2013201320132013 
’

where we use (xt) as coordinates with ni end t is distinguished

because assume that the -oint TIl 
= (1.&#x3E;,é&#x3E;:1’,,Sf .. l-o hore the base point

J1;(D ) ) is the oriiùn in n-t-*1 enà the ?irnei’;:u,ùrf&#x3E;ce i’  -i 1 . o is the in S" and thé ;-/L’ ic defined

in some polydisc = f ( ï  1, ft " nd ) t ) , .= ç ..n J. s ome po ydî 1.J c ’-, E ) - 

l " 
- Jo. , t J . ! .A. l ". ’- ’ .’ nu J l..! ’B.. - j.

prooi will noi; 8raploy a certain 1.tB(? 1&#x3E;s ,in te d8fine.Thé will novr employ a certain -nodule e be dn te e

First, if a &#x3E; 0 1’!"e put x { ’’:t) : . -c É’ -(;7rJ’ !t’!) &#x3E;"°11 

is the inductive limit thé quotient 1),n&#x26;à ) .Ù,l Ô / ;-,;i

?, - l’ ccnd Ô re po13:iiscs 7’ :a’C B and polydiscs r- ;vhich shrink to + d n ori ’in ’1 i" ’ .



IX.7

2.7, Remark Of course, this means that if Z(a) = { (x,t): Re(t) &#x3E;

- a(Ixl + iti), then C is the Stalk at (0,0) of the inductive limit of

the local cohomology sheaves iez ( g ) where = 
a

It can then be proved that 6 is a left (" -module. The module structure
Po

can be made explicit.. In Section 3j
Po

a general construction of -modules is made which contains the case

above as a very special case.

2.8. The space Hom 00 ( /~ 9 C ) will now be studied. The crucial
PO PO

step towards the proof of the Reconstruction Theorem is to show that this

is a finite dimensional complex vector space which in addition is ample

00
enough to determine the stalk Then, by the finite dimensionality and

Po

coherence, the sheaf //? is determined in a small neighborhood of p o too.

Well, we have to clarify the content of this assertion. It goes as follows

2 . 9. ÀÇ = Ir can be assumed from the start since holonomic

C -modules are locally cyclic. So here ~ is a coherent sheaf of left

ideals in éi and the equality;4 = supp( = ~(~C)" (0) holds then,
where (J( ~ ) -1 (0) is the set of common zeros of principal symbols of sections

in the sheaf o~: .

cyclic it is clear that the space

Hom ( eo- 9  ) can be realised it follows:
PO PO 

@use,ful description. An 81ement ç in thé space above is represented

by some holomorphic function 9(x,tl e ~(~.7(a)1~) such that ... Rky

all extend to 4’ Ô » , where Ri ’ ... R k is some finite set of generators

for the left ideal.! .
~o

In Section 3 shall describe in more détail how reneratorn jn J.
"0

are chosen. The assertion that lio; /( L) dstpr’nÍn8S / po means

~ 0 C)

the followini-: f ,ù, 4 î ils ,1 = 
’ in L ;-or 3," FI 1,r_

r0
the solution space above, then ., belox,çs to thp left ti 

r&#x3E;_
W 
¿ o
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~ .’H.,¡;;:-:¡~..;8 Pô 
_ 

,

2,Il . A Reuark Recall here that E" is faithfully fiât over . This
is used in order to identify with and so on.

? 12 How to use the result above As we have already sail, it is the

assertion that the solution space Hom [80 ( détermines 
PO PO PO

which îs the part of the proof to which the subsequent sections are devbted.

’fhe proof of the reconstruction theorem is then done as followes

2.13. The ImbeddinE, Leiama Firstv assuming that the results from Sections

2.8. - 2.10. hold we can find some a &#x3E; 0 and some 8mal1 polydise A and

a k-tuple (Pkin which give solutions and induce a basis

for the k-dimensional complexe vector space ~~f~(~~ ~ )~Po PO

A notable point shotld be mentioned here

2.14. Lemma If a &#x3E; 0 then W(a)I1S(lÂ is empty if the polydise L1 is

suffi ciently small.

This is easily proved, using the fact that by assumption is

isolated in T x See also [J.,Lem 4.2.1.] for a proof.

Choosing so small that W(a)o¿1ns is empty, it can then be proved
that the holomorphio funetions can be continued to (in

general) multi-valued analytic functions in S.

In Section t9 we shall prove this existence of analytic continuations.

Admitting it for the moment, we then get a local système in ~BS, whose
stalks = the £-subspace of L~ B generated by all local branches

of the functions ’fi *Iule Ifkrespectively.
The multi-valued extensions of the T-functions have finite determinatic

so the stalks of 1 consist of finite dimensional C-spaces. At this stage we
make use of a result whose full proof requires Hironaka’s Desingularisation

and it goes as follows

215. Existence Lemma Given f as above there exists a section
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Q = in .A.J) ) - where is thé sheaf of différentielQ = in ( .zl , ,li,i ) - whe re ïs the sheaf of diff orential

operators on of infinite order- and another local system AB S

whose stalks (xit again are £-subspaces of (x,t) and they satisfy:
(1) The equality Q"’- = ! holds, i.e~ Q operates on 67 in the usual

way and maps the subspaces onto for all points (xpt) 

(2) ’ is the local system generated by local bracnehs of finitely many
Nilsson class functions defined in 

2.16. The sheaf i~~ eM -1 (0) . Using the fact that f arises from

Nilsson class functions, the theory about holonomicJ?-sheaves then shows
that there exists a unique coherent sheaf left ideals in v which
satisfies

(1) If (x,t) S then the stalk " ~ Qg = 0 in

(xt ) for all germs g in the subspace 

(2) The sheaf is holonomic and has no 0 -torsion.

Wall, its proof is not easy, we may refer to [11,Theorem 4-8-30 on page
270] . See also r 5 J and [1,. 

2.17. The Imbedding Lemma We can introduce the holonomic 9 -module

and then the equality çf= $ and -1(0) on
r/ e 1 /1 GO

 - S. imply that the e -linear mapping i nt o
determined by the right multiplication with the section Q is well defined

and it is invective ih a amall neighborhood of p because the solution

space Hom E- ( odp L) determines ~~ in a neighborhood of po.p0 PO o

WeIl, here the holonomic is of the so called Deligne

type. and the result in 2.17. ils the content of Theorem 4.1 .1 . in f 11 . It
is called the Imbedding Lemma since it shows that //7 can be imbedded into

00

2 71 where 7? is 51 -holonomic and of Deligne type along the
$:J

hypersurface S = where we aasumed that jf = has a generic

position at p 
o 

from the start.
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2. Thé final part of the roof Once the Imbedding Lemma has been

provedt it can thon be proved that ilk, contains a ÔD -submodule 

so that the image of f’ fa (oP/Je’) eq uals E  7? . To prove this, Kawai
~ ÔD o

and Kashiwara also makes use of the Imbedding Lemma applied to the dual

holonomic ~-sheaf ~~ = ( l$, É ) . The details can be found in
Section 5-2 in r 1 J .

2.19* The extension of reg . If we have obtained the equality

PIC, f &#x26;? where, is a holonomic oÏ/-submodule of D À/which has
9&#x3E; 0 0

Deligne type, then the equality / « 0,Z easily follows on
reg 0 ,

the open subset T~ 6} ~7 is a holonomic ~-submodule
reg °

of defined on the whole variety ~/~ , so from the discussion in Section

2.2. we conclude that is the required sheaf l’7 /o reg

2.20. A sticky point In general, if /? is a holonomic JJ -module of

Deligne type it is not obvious that has R.S. in the sense of 1 3 i

because it involves a condition on all componente of its characteristic

varietyp while the Deligne sheaf 7’l a priori only has R.S, along the

component of supp( la Î2 ) given by T" . However, during the construction
reg

above the Deligne sheaf quite spécial because its characteristig

variety is small, iaes it in the closure of the smooth cono«m 11C so that
has R.S. in the sense of [31. 

SAA&#x3E;

A notable point is theng that using the Reconstruction Theoreme it can

be proved that any holonomic J7-module of Deligne type has R.S. in the sense
of L3 ~ See rI ,Theorem 5.2.31 and observe that this important result

cannot be proved until the whole micro-local calculus has been used to prove

the Reconstruction Theorem for holonémie £ -modules. Of course, this is
natural since the définition of R.S. is already of a micro-local nature.

Summing upp we have now finished a brief sketch of the proof, without

any details. In the subsequent sections we shall give the details which

lead to the assertions made in Section 2.8.-2.10.
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Vie keep the notations from Section 2. So = /o and then supp( 111) *

~ ~(~)’~(~) = T~ close to the point Po = (0,0,0,dt). The fact that the

fiber is isolated in T easily implàes that the hypersurface S = p (0)
0 s

where p(x,t) is a Weierstrass polynomial with respect to t, i.e. we have

3.1. The subr e 
PO 

 Dx) will be used in the sequela An

element there is given as a finite sum extended overÉ a x

finitely many multi-indices a = n) while as indicated are

germs which are independent of the D " -variables.

Using the fact that Ep 
0 

is isolated in cy( z)- 1 (0), divisions in É 
PO

show that the left ideal 
. ZP 0 is generated by elements which belong to

the subring PO  Dx &#x3E;.

This is useful, because now the solution space /~~, ~)is
PO PO

oonaiarts’of elements Z in C for which = R.5 = 0 where Ri ... R k
is some finite subset of 0 É (xt,Dt)  D x &#x3E; which generate the

Po PO x

left ideal JL 
D 

in the ring C D
PO PO

This simplifies the subsequent analysis because actions on C) by

éléments in  Dx &#x3E; are rather easy to describe. We shall do

this now because explioit formulas are needed later on..

3.2. The action on ~?. Let R = A a(xlt,,Dt)Dx be given. Each

germ A (x,t,D t) can then be expanded with respect to D t so we get
~ ~ 

00 

where the first sum is finite since 0 j~ j ~ ord(A ) Lhere. Co, lecting

all these expansions we find that R = Q + K where Q = ¿ qj «" 

i la t x

is a section in j9, defined in some neighborhood of the origin, while
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only oontains negative powers of Dt.

introduced in order to define the action by R on ~/~ Of course, the reason

why these kernels are introduced is that negative powers of D t ehoilld

produce primitive functions with respect to t, and we may observe that if

Y(x,t) is a holomorphic function and if v 1 and ta is some given point

then the integral 
t (t-u) v-1 /(V-1)91 q)(Xt U) du i s the v-th primi -b ee of Pthen the intégral ) 
t 

is the v-th primitle of T
t0

with respect to t.

This suggests the following

3.4. Définition For a given germ 9 in (X 09 t 0) we define
2013201320132013201320132013 

o

where the intégrais are defined when (xpt) stays in a small polydisc ZI 0
centered at so that the germ 9 belongs to,(o). The integration
000

is then taken along the straight line from to to t in the complex u-space.

3.5. Remark about the convergence Of course, the action by R on xot)
is only defined when (x,t) is close to the origin. For examplel we can find

ôo and eo so that all the coefficients of Q, and all the kernels Ka(x,t,u)
are holomorphic when Ixl  6o and both and lui are  £ 0 .

Observe here that K a (x,t,u) indeed are holomorphic in a neighborhood of
the origin in the (x,t,u)-space because belong to po
which implies that there exists a polydisc d and constants A and :B so that

Vk vga Ô( à ) and the sup-norms for ail v.
2013

Summing urg if R1 ... Rk is a finite subset of C Dx &#x3E;

then there exists a polydisc Q so that R, ... Rk define

£-linear operators on the stalks for all points (x,t) inside ~1.
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4. The local solution spaces 

From now on we fix generators R1 ... R- weeh belong 

for the left ideal Z . By coherence it then follows that
PO

~ R1 + ou* + holds in a conie neighborhood of p 0 and

since supp( /J1) = T- we can then find a small polydisc s 00

= { (xt) s lxl  ô0 and Itl  c0 1 such that the followinghold:

(2) Both Ôo and EO are chosen so small that R, ... R, opérée on Ô

inside B(Ô ,e ) as described in Section 3-
o o

In addition to this we shall need some elementary facts about the

hypersurface S. Recall that S = p- 1(0) where p(x,t) is Weierstrass with
respect to t. As usual we then choose ô 0   E 0 and in B(ô ) 0 = { x:lxl  

we find a hypersurface Z = the local of the discriminant of p, such that

the pMjection (x,t) -+x îs an e-fold zovering of (S-Z) onto B(6 o )-Z. The

following notations will be used to describe this

Notations Put e(ô 0) = B(60 ) -Z and if x 6 B*(ô ) then we get the
o o o

roots a1(x) ... am(x) whieh give the points on S, and actually

they all belong to the regular part S reg0

4.1. The points on When x is given in -then the
j 0 

reg 
a 0

smooth conormal T 
reg 

contains the points ’7,(x i = (x.a.(x.)dp(x.a,(x.)
and using the classification theorem for holonomio C-modules with smooth

support, applied to 777 = at the points oi wc arrive atJ 0

the result to be discussed below. First we need more notations.

4.2. The solution spaces à(x :t . : .) . Let x 0 B (5 ) and let° ° ° J ° J J ° ’ O

. be a small polydisc centered at (x a . (x )) and let t. be a point in
J O J ° J

the complex t-space such that is outside S. Now Ri 1 K operate

on ,t.) 
and we say that a germ Y there is a local solution if
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all the functions

extend to if they belong to 0( 1°1&#x3E;.
Of course, if T already belongs to 0(,à i) then for all

J J. J

1 i k. So we are only interested in the non-trivial solutions, which

consists of the qu0153tient space of all solutions/trivial solutions. This

is a complex vector space which we denote by .(x :t.: 2à .) and they
3 0 J J

defined provided il. is a suffi ci ently small polydisc centered at
J

(X0s’ai(x 0) 1 i.e. it suffices to know that in i 
o J 0 J 0 0

Weil, this is just a definition. The result whieh can be proved 1s now

the following 

4.3. Proposition Given x in B*(6 ) and some 1  j 1 e there exista

a polydise 1. cettered at (x » such that the following is true

for every polydise - and any point t. chosen so that (x is
J J J 0 J

in S WC :
The solution space is finite dimensional and its

J o j J

dimension is independent of both and tj and equals the multiplioity of
the stalk of at the point defined in 4.1*

4.4. Remark The assertion above uses different notations as in 1 L ) 1

where our solution spaces are interprYAted from the
j o j j

", 

w 
ou I

vector space where rj -  xo , « i  xo &#x3E; &#x3E; . However

the actual proof of the classification theorem and the fact that the sheaf

~ is generated by sections R~ ... Rk thieh belong to e(x,t,,D )  D~ &#x3E;

implies that the "naive" solution spaces ) introducedJ 0 J J

above are the good micro-local solution spaces whieh are ample to

00

determine the stalk f/ B also.

"30"

To be precisey rather than working with we may work wi th

the sheaf + ... + where ~ = E(xpt,,Dt)  D x &#x3E;, and the

claim that the solution spaces /~.) are ample means this
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4~5* Proposition so that R is a finite

sum then R opérâtes on 0 inside
, o

B(b09 F-0) if ô and e0are small. If R then is the zero mapping on a00 0 0

solution where . is some small polydisc centered
J ° J J J

at then the image of R belongs to the let
i 0

ideal which JL generates there. Finally, this conclusion holds for each

Wall, we do not try to provide detailed proofs of the assertions made

so far. As indicated they are rather easy, once the classifixation theorem

has been proved. To finish we give

4.6. Définition When x0 0 BZ(b 0) and when 1  j  e is given, then

(X0 is the inductive limit of the solution spaces :t. .)J 0 J a J J

as Â. shrink to and (x ,t.) . - S.
J 0 J 0 0 J J

Using the version of Hartogla Theorem, as explained in Section 2.3.

together with Proposition 4,5, and divisions in the stalk which
Po

reduce any given germ P there to a germ which belongs to

and the fact that if xo is given then the e-tuple of points 

1  j  e provide points on every component of S reg 9 Implies

4.7. Proposition The direct sum (x ) ... (x ïs a finite-,--z---,---.- 1 o e 0

dimensional complex vector space, and as these spaces are ample

00

enough to determine le
p0

Returning to the notations used in Section 2.7., it remains now to

show that there exists a suri-ective mapping from Hojw e- ( 9 Ê ) ontoPô PO
04r i (x0). provided that x is sufficiently close to the Qrigin.

j o o

In other words, we must prove that any e-tuple of local nolutionc
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can be obtained from a "global solution" . The remaining sections are

devoted to the proof of this. In the surjectivity is proved by means

of a quite general machinery. See for example ~~ ,Proposition 4~4~~* Here
we try to supply a more self-contained proof,

5. The passage from local to global solutions

Now we enter a more detailed analysis. Recall that generators Ri R
have been introdt4ced. The fact that the fiber is isolated in cr(~)" (0)
can be used to show that the k-tuple Ri ’~1~. contains special operators

P o ~Q~ t «~ Q n which we describe below.

p0- p0(xptpD t) has order zero and a(P) = pW for some w ~ 1. So

introducing a kernel for the part of order -1, we can write

4 each 1  i ~ n ~ the operator

where ord(Av)  v for each 1  and ou ïà some positive inte#er.

5-3- Remark The existence of operators P01 Q, ... Q in the stalk C PO
follows by division theorems See for example fl ssection 3-5J for

Po
a similar construction, where the notations differ from ours since the

sheaf e7is not assumed to be cyolic from the start.

5.4. Semi-local solutions

Recall that we always consider a polydise B(ô :e ) where actions by

R1 ... £ on C7 exist. In general we shall let à o   £0 . In parti cular

we can assume that Õ o and £ 0 have been chosen such that if t0 = -e /4 say,,

then (x,t ) is outside the hypersurface S for all Ixl  80 . In fact, ô
o o o

may even be chosen so small that when x EB X(80 ) then the roots 7,’x 0)
O O J O

all have absolute value  E o /4. Having made this choice we give
5.5. Definition A germ Y in 0, ) is called a semî-local solution

2013201320132013201320132013 

(X olt0
if there exists some ô &#x3E; 0 such that R.9 are holomorphic in the polydisc

1
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A remark Since x 0 £- e(ô0) here we observe that if ô is sufficiently amall

then there also exists some e &#x3E; 0 such that the open sets

W.= { (xgt) : jx-x j 1  ô and It-a.(x)1 1  e 1 are pairwise disjointl
0 0 J

which amonuts to say that S n B(x :t :ôe /2) is decomposed into e components

given by the equations t = a,(x).
J

5.6. The analytic continuation Given a semi-local solution T the fact

that P 0 ,t, 0 :ô:£ 0 /2) implies that T exteuâs to a multi-valued

analytic funetion on /2) - S. Indeedg this is a consequence

of the analysis to be given in Section 8 . 5ec,"-" 

Admitting thisp a semi-local solution produces local solutions. In fact,

to each 1 ~ J ~ e we choose some path ïi in the complex t-plane whose
initial point = t while the end-point Yj(1) = t. is close to the
root a.(x ). At the same time (x , .(s)) stay outside S for all 0  s1J 0 0 DJ - -

where the path ¥j is a continuous mapping 9---* dmi (s).
Given If, we then take its analytic continuation along the path f.

. J

where /.(s) = (x Jlj(s» and arrive at the germ J 0 j Fj 
which then gives a local solution, i.e. an élément in dr.(x ). So for an

1 0

e-tuple of paths . chosen as above, we get the e-tuple (hf local

solutions 
1 

Q) 0 in the space 4} Cj(xo). The material to be
’1 e 

J 0

presented in Section gives then

5.7. Proposition Given any e-tuple in (x0 there existt e J 0
9-’1 - - - ’r-e

semi-local solution". and paths ee so that j = for each j.
J
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from semi-"local to global. solutions

Recall that the family R ... R, contains the operators Q1 ... Q . They
are of a form which enable us to apply the Cauchy-Kowalevsky Theorem and

show that a semi-local solution Y can be replaced by a global solution

without changing the images in 0 C.(x 0 The result we need for this is
J 0

5.9- Proposition There exist positive constants ô 1 and K- whieh only dépend

on the operators Qi ... Qn# such that the following is true:

If çp is a semi-local solution then there exista another germ

9 in t) 
whioh satisfies’ n 

(1) IP extends to /2K) for some e &#x3E; 0

belongto 
v o o o 

,

(3) The germ 9 is holomorphic in a polydisc where e &#x3E; 0

in general is a small number.

Conclusions The result above holds for any point which is

sufficiently close to the origin. Keeping ô 1 and K as above we make a good

choice. For example, we choose lt o 1  e /4K and choose 6 0 so small that the

roots /aj(x)/ 1  e /4K for all 1 ~ j ~ e and all x in Then (1) in

Proposition 5-9- implies that the images of 9 and 9 in 0 ÉÎ (x ) are equalà 

because the polydise B(x ,t SÔOF-0/2K) oontains the points (x ,a (x )) .o o o o j o

Nextg since the operators RaIl belong to  D_ &#x3E; it is

v p t x

clear that (3) implies that R T also are holomorphic in the polydisc

Wells then we combine this with (2) and a classical result- due to

Reinhardt- which implies that the functions actually are holomorphic in

the polydisc B(x :t :6./2,e /4K). Finally, with

ô1 and K fixed here we may assume that lx o 1  81/2 and that ltol 1  c /4K1 " o 1 oo
»

so that R v 9 extend to holomorphic functions in a neighborhood of the origin
-

and lthis means that T is a global solution.

Of courset to finish the proof we then have to show that the 

extends to a multi-valued function in .4Ci - S for some polydisc ¿1 centered at

the origin. This analytic extension is not at all trivial to achieve, thé
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proof uses method similar to those in the work by See and rj-ql
and it was also used by Kawai and Kashiwara in In Section ô we

N

shall describe how the analyti c continuation of 19 is proved.

the material so far has finished our account of the proof of

the Reconstruction Theorem, where 3 essential details have been omitted,

Proposition 5-7~ and 5-9* and the fact that global solutions, which

a riori consist of germs V for which extend to extend by
v

themselves to multi-valued functions inà- S.

The remaining sections contain material which supply proofs of these

assertions.
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6. Thé intégral o"perator pW 

To simplify the subsequent notations we shall replace x 
o by 0 and t 

0 
by

0 and normalize E 
o 

to be = 1. The assumptions below reflect the situation

which occurs in Section 5-4-

So we consider a function p(x,t) = Î7’(t-a j(x)) where the roots

a1(x) ... a (x) are distinct for all IXI 1 5 and also 0  la i(x) 1  1 hold

then.

Let also K(x,t,u) be holomorphic in a neighborhood of the closed

polydisc where 6 and both Itl and lul are ~ 1.

To a given postitive integer w we then study the operator pW + J K
and we begin to study

6.1. The freezed équations With lx o 1  ô0 given we consider the operator

bo x0 which maps a germ at the origin in the complex t-plane to theo 
t

= (x,t)9(t) + j 
t 

o 
0 

0 
0

We say that a germ ? 1s a solution if P 
x 

9 extends to a continuos
0

function on the closed dise D = { 1 } which in addition is holomorp-
hic in the interior D. In other words, 9 is a solution when P (p belongs

xo

to the Banach space A(D), where A(D) is the famous dise algebra.

Of coursep if the germ T already belongs to A(D), then 9 is a trivial

solution. So we give

6.2. Definition The space = solutions/trivial solutionsq ia oalled
xo

the space of non-trivial solutions to Ô’ .
x0

Now we can prove

6.3. Proposition is an W-dimensional complex vector spacep where’ ’ ’ . 

0
CU= we.

The proof is an easy consequence of the following two preliminary

results.

6 o 4 a Lemrna exo is bijective on the space of germs at the origin.
6.5. Lemma The operator xo g 0 K(x 0 tttu)g(u)dii is compact on A(D).O o

leave out the easy proofs .
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Proof of Proposition 6.3. The operator g - on A(D) is

m i 
.

obviouSlY injective, while its cokernel ist= tu. Since É is a compact
xo

pertubation by Lemma É.5. , it follows that 
x 

has index jU as an
0

operator on A(D). It is easily seen that its kernel is zero and henoe its

cokernel is Cu -dimensional. Choose then hi ... h _ in A(D) so that

A(D) = Im( . ) ~ £h1 e 0 Ch. hold8.
o

Using Lemma 6-4- we get unique germs Ç satisfying Px 19 * h in C{t}" 

J j

and then it is easily seen that If is a C-basis of to -
’ 2013 xo

6.6. Equations with parameters Since solutions to the freezed equations

have been found in an effective way, we expect that they can be obtained

in such a way that their dependence on x is analytîc. Wellt the result below

shows that this is so

6-7* Theorem There exists some E &#x3E; 0 and holomorphic functions

91(xo,t) ... ,all defined in the polydisc B(bo c) such that:

with 1 x 1  ô » the functions IP1 (x0st) ... T (x 0 ,t) is a basie for

the non-trivial solution space 4?0 xo
o

Proof Suppose first that we have found functions Hl(xgt) ... 

which are holomorphic when lxi  5 and 1 t 1  1 and continuous when 1 t =1

such that A(D) = Hl (xo,t) 0 ... 0 H (xopt) hold for every xo.
o

Then we find the function 9 . (x,t) by solving the equation
J

= H.(x,t) and Theorem 6-7* fol10ws. It remains only to see
x j j

why the family exists. For the unpertubed operator pW , the

W-dimensional cokernel spaces are generated by the holomorphic functions

Gvtj(xpt) = p(x,t)/(t-a .(x)) where 1  j e and 1  v e. Thevj J 
’ 

- - - -

existence of H.... Hw for the pertubed operators follows easily then. In

fact, the standard proofs of the Index Theorem for compactly pertubedaut

linear operators on Banach spaces, gives the result below which is applied

to conclude that HW exist.
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b~ Let be a holomorphic fanctionv defined in a

neighborhood of the polydisc lxi 1 8, with values in L(B,B) = the space of

bounded linear operators on a Banach space. Assume that T 
x 

are injective for

all x and that there exists an integer uJ and B-valued holomorphic fonctions

G, Dlu. G&#x26;4&#x3E; such that the decomposition B = ... ~ BG (x)
hold for all x. If now holomorphicg where K 

x 
are compact operators

on B and where Tx + Kx are injective for all xp then there exist B-valued

holomorphic functions H, ... H such that B = Im(T +K ) C hold
x x J

for all x.

6.9. Remarks about Theorem 6*7- Consider one of the T-functions in

Theorem 6-7. For example, put 9 = ’1 to simplify the notations. If we first

introduce the positive number ~ ~ inf { la.(x)1 : 1  j  e and 6 }
which by assumption is positiveg then the fact that

P(Xtt)y(xtt) + ) t K(x,t,u)Y(xgu)du belongs to and that
o

p(x,t) / when 1 t /~ and &#x26;0’ easily implies that T(x,t) extends to

a holomorphic function in the polydisc = { (xit) : ixl  ô 
0 

and

Itl ~4 1.
In fact, this follows from an estimate of the Taylor expansion Y(xpt) -

E and the fact that the kernel K e (B(6 :1,1)) The question
j 0

arises if we can continue P to a larger subset of the polydisc B(b 091),

This turns put to be true. For the proof we use the assumption that the

roots x (x) ... a (x) are distinct and the result is

6.10. Proposition Each function 9. from Theorem 6.7. extends to a
. J

(in general) multi-valued analytic function 01. 0gi) - p- (0).
6.11. Remark The proof ïs actually not as trivial as one may expect,

using the easy observation that if x 
o 

is fixed. the fact that is

a solution to the freezed equation, and an easy 1-dimensional analysis then

implies that t ---&#x3E;T(X0lt) extends to a multi-valued function in the punctured

dise { t : Itl  1 and t 4 a.(x ) for all j 1 .
J 0

In facti even though Y continues analytically along the paths described
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aboveg we cannot conclude that V then prolonges to a multi-valued

function on B(ô 0 Il) - p- 1(0) because we must verify the existence of
analytic continuations along other paths too. However, using some elementary

facts in homotopy theory, this can be proved and we shall describe this

method in the proof of Theorem 8. 7~ which can be used to prove Proposition

6.10. too.

6.12. How to deduce Proposition 5.7. Let us first remark that the

solution spaces t 
x 

to the freezed équations have as many non-trivial
0

solutions as we could hope for. So this means that Theorem 6-7- really gives

the optimal number of non-trivial solutions. This has the following

conséquence. and some 1 ~ j~e.
Let 1 x 0 1  ô 0 VBe given ana suppose that = is a

small polydisc centered at (Xopa i(XO » so that the intersection

Llj is given by the équation t = a.(x). Let t. be a pointJ J J

t el anci (x,t) 1 p-1(O) men Md le satisfying
~ ~ 0 

w 
t 0 J

p(x,t)1rf(x,t) + ~ extends to the whole

polydisc 2013.. So f is like a local solution as described in Section 4.2.
J 

Let then xi be given with lxi-xol Î  8. à 1-dimensional analysis and

the fact that is a basis lmp lies that thereW x1
exist unique complex scalars ... such that:

(1) E is holomorphic in the dise 1 t-aj (xo)  e
’ J ’ J ’ J 0

where q) ... T are local branches of the multi-valued extensions of

~ "* If. at the point (X 0 t all obtained by a continuation along
a fixed path à, from (x 0 lÔ) to (x 0 9 t
-... -.... --.. o 0 0 J

Recall also that t. is chosen so that (x,t.) stays outside p-1(O)
when ix-x 0 1  8. Hence T.... 9 existe when 1  scalars

c1(x) ... c,,.(x) can be determined for all jx-x j  8. and by their

uniqueness they will be holomorphic in the polydisc 1  6.
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Summing up, we have found

6.13. Proposition If f C, (x00, ti) is a local solution then there exist
" ’ ’ " ’ " " 

holomorphic functions c1(x) ... c(x) defined in some polydisc B(xo:6)

A Remark During the preceeding discussion we were choosing analytio

extensions of the W-tuple cP 1 ... 9~ . The choice of a path ï does

determine the c»-tuple c1(x) ... o (x) then. Howeverg the fact that

01(x) ... c~.(x) exist does not depend on the chosen path ~ from (x ~0).
to (X0gti). The reason is that the W-tuple (IP ... YW ) determines a

local system of rank u.J in B( 6 o ,1) - P-1(0). :

The précise meaning of this assertion 1a

6.14. Proposition Let e and ~ be two paths in p" (0)

having = (0) == and ~(1) =~(l) = (x~t~). By analytic

contonuations along / and along respective1y, we get ou -tuples of germs
n denoted by { } and { respectively. Then there

Bx/ J IJ J ’

exists an invertible matrix A(x) of size ( with coefficients in

the local ring x such that the vector A(x) (9j) 
" 

in
J /) J 

xlgt

We leave out the proof t which again is an consequence of 1-dimen-

sional analysis. Finally, at this stage we leave it to the reader to

deduce Proposition 5-7- from the detailed material above.
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7. A Cauohy-Kowalevsky Theorem

The operators Q, ... Qn i introduced in Section 5.2. are of the so

called Cauchy-Kowalevsky type with respect to D 
1 

... D 

n 
,respeatively.

Proposition 5.9- is an easy consequence of the Cauchy-Kowalevsky Theorem,

applied to each of the operators Q1 ... Q n and a classical result about

analytic continuations in Reinhardt domains. The details are as follows.

7.1. The Cauchy-Kowalevsky Theorem for each Q. will first be recalled.
"; .... , , ... ;-.. 

- 

1

7.2. Proposition 3 constants K and 6. such that the following two

results hold for each 1 ~ i ~ n

(1) If 0 It 0 :8,E) where lx 1+6  6 
o 

and ft j Î + e  e 
o 

then

the inhomogenous équation Q.h = g is solvable in B(x 0 t0:81,r-/K)
i o o

(2) If 9 é 0 (x 0 1, t0) satisfies = 0 in then 9 extends
(xt i 00’

to 8, polydisc whose x i-radius is ô1’ while the radius with respect to other

coordinates and t remain small.
1 i n

Applying Proposition 7.2. n tïmesp i.e. to each Qi ... Qn we get

7.3. Corollary Let’ be a germ in C9, (X0 . B such that

/*

p t0 :8..E /2)) for all i. Then there exists another germ r in

satisfying
0’ 0

is holomorphic in B(x 0 It 0 :89E 0 /2K )

(2) The germ ?(x.t) is holomorphic in B(x 0 Pt0 :8 1 E) for some small c &#x3E; 0

(3) Q. are holomorphic in B(x 0 It 0 :89E: 0/ 2K’) for all i.
i . o o o

A Remark Notice here that 6 is a small number, i.e. re study functionG

which from start are defined in small neighborhoods of x .
v

Sketch of proof First the inhomoeenous équation "1 Q ir nol ved

so thgt g belongs to Put then C?1 = % - ~~g which then

is x -holomorphic in a dise of radious Ó1 by (?) in Proposition 7.2. "-en

the inhomogenous equation = 9. is solved and -:e put ?. = . -l: , 1 and ro

r

on. The function 9 = ’aticfies (1)-(§)1 in thc 
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-;.4. An im-proveïûeiit f (3) in Corollary 7.3. For a given i the

function Q. is holomorphic in a Reinhardt domain centered at (x o t 0 1.e.i o 0

in the union and this implies that

these functions extend to be holomorphic in the polydisc 

7.5. How to deduce Pro]20sition-5.9. WeIl this is obvious because the

operators present in the family IL ..~ Of course, the

constant K in Proposition 5.9. should now be chosen as 1/2Kn with K as

in Corollary 

Notice here that (2) in Proposition 5.9. follows from (1) and the fact

that 9 from start is a semi-local solution. So the "adding of equations"

does not change anything in Proposition 5.9., simply beoause the semi-local

solution 9 was given.
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continuations

In this section we shall study analytic continuations of certain inte-

grals. We are going to use methods similar to those employed by Nilsson in

and Let us begin with the following set-up.

8.1. p(x,t) =-= te + + ... is a reduced Weier/trass

polynomial, where -fe are holomorphic in a neighborhood of Ixli 6
The roots a 1(X) ... a e(x) have absolute value  1 ,and we also assume

that to is a given point such that t04 aj(x) for al 1 j and ail 1 x1 6
8.2. The set e = B(b 0 gi) - (S UZ) where S = p- 1(0) and Z is the locus

of the discriminant of p, iae. Z - { x : At least two roots a.(x) are equal

8-3. The kernel K(x,t,u) is holomorphic in Ixl 1 6 and both Itl Î and

1.

Out aim ils then to prove

8*4. Theorem Let If0 c- for some 1  ô and assume that 920132013201320132013 "

can be continued to a multi-valued analytic functïon 1 in B . Then the

germ at (x ,t ) defined byo 0 
A.

also extends to a multi-valued

analytio funetion Fïnallyq if $ belongs to the Nileson clans, so

does ’fi.
The proof of the existence of the multi-valued extension of 90 is an

easy consequence of the following elementary result.

8-5- A Homotopy Lemma be a path in BS. having as

initial point. Write $ (s) = for 0 ~ s ~ 1 and let us put

x1 =~ (1) and t, = d’x(1) so ’that (x, ltl) is the end-point of ~.

Then we get the path r in r with r(s) = ( (s),t ) which hae. 4x 0

.(xi0,’t 0) as end-point. With these notations we have:

Claim a path._fin the punctured t-disc = 1 t : t 4 aj(x1) 1 which

moves from to to t1’ such that ~y is homotopic te the composed path
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8.4. Using the homotopy lemma, thé oiac 6 the

multi-valued extension ï easily follows. If i is a path in e 

(X01, t0) then the germ ( ro)e which arises by analytic continuation along
o 0 0 0

is given by the following sum:

where (q) 0)e is the germ at the end point e (1) = (Xi 9ti) arising by thefi a 1pn"enanalytic continuation first intégral, the intégration in the

complex u-plane is àlong the path f from 8-5* and during this ïntegratioi

we have considered the continuation of 9 0 , first along the p&#x26;tk- r from
B

to (Xlgt and then followed along the path .0 0

The case when belones to the Nilsson class Using Definition 4-3-4. in

255J, the proof that lyr belongs to the Nilsson class if j does
is ax«ved as follows. Given the end-point of a path we define

the number = inf { v j and both

v and j from 1 to e 1.

Then the path f in 8*5* can be chosen so that its distance from the

roots a1(m 1) le le le O:e(x1) and then the temperated grwoth

condition on / can be derived using similar arguments as in I.Z 1. A
notable point here, is that if the growth of the Nilsson class function
is some number if / is locally bonded

- see [11,Defïnition for the précise meaning of the order of

growth of a Nilsson class function, then the order of growth of / is

j~~p/ , where j?’ is a fixed number determined so that 

hold for all (x,t) in B* , where A is some positive
constant. This can for example be used to give an alternative proof of

Theorem 5.1.1 0 in [1 J.



IX. 29

8.5. The extension of local solutions

Recall that in Section 2 we have claimed that a global solution can be

continued to a multi-valued analytic function in B(6 e ) - S when 6   e
o 0 0 0

and e o is sufficient1y small. The extension to the complement of S U Z

is easily obtained using the proof of Theorem 8.4., but it is not obvious

why Z can be removed. In [II this is proved on page 4-5-5 and here we shall

présent an alternative proof, using our set-up.

So be a global solution. This means that we can find positive

numbers 6 o  e o such that the following conditions holds

1 a fixed point t with It J  such that (x,t) is outside S =
’’- " 00 B

= p-1(O) when )xl  6

(2) , is holomorphic in some polydisc B(x :6 te) with e small

A notation We put B(5 where Z is the locus of the
o 0

discriminant of p.

8.6. Remark Of course, the local solutïon If 0 actually satisfies more

équations, i.e. extend to B(6 ,E for all v. However, to prove that
v 0 0 0

90 extends to B(8 ,e ) - S it suffices to use the équation (3), where the
o 0 0

reader may observe that use of the other equations already has been made

in the passage from semî-local to global solutions, which implies that ?
can be assumed to satisfy (2) from the start.

Proof of the extension to B(b ,e ) - S . We are going to use the
o 0

W -tuple ?1 ... 9g from Section 6. These functions also satisfy (2) and

(3) above, and as we have already said (2) and (3) and the method used to

prove Theorem 8.4* implies that ’P 0 9(pi (Pj all extend to BX and it

remains to get rid of Z.

To prove this we shall first study the actual continuation inside B. So

let y be a path in B~ where t (o) = (xo,to) and ( 1 ~ = (x1’t1B. Then

we find that the germ (q&#x3E;0)J" at (x1,t1)- arisin.-7 by the analytic continu-
1 1 . 

contnu-
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-ation along 1 satisfies

holds where  (x,t) 

. 

= and the
11 

0

°intégration takes place along a path from to to t1 which stays outside the

roots aj(x1)’ as explained in the proof of Theorem 8.4·

Since is defined with to and ti as fixed end-pointsy and sinoe

the kernel K(x,t,u) is holomorphic from etart, it follows that ~(x,t)
is holomorphic in a’_polydise /x-x1/ l  5 and l tl  £0 aiready, i.e.

the freezed functions t --&#x3E;‘Î’(x,t) bêlons to the Banaoh spaoe A(D) for all

1  6, where 6 i8 small and D = {t : }.

Using Formula 1 and the material from Section 6.12-13, we then find

Formula 2. 3 unique germs ... cw(x) in and a function

H(x,t) which is holomorphie when bo and Ix-x1/ l  8, such that

holde in xj 0’t1) . where (T.)~ are the local branches which arise by

analytic continuation of T, which is performed as in Section 6.12. That is,
fîrot Ç~ (xlt) is holomorphio in a polydiso Ixl 1 6 and )t-t ) 1  e - see

6.9. Remark- and staying there we consider the germ of 9 1 at which

then is continued along the path Y with j’cs) = and where

moves in the punctured t-dise from to to t1- avoiding the roots
used to 

J *
Proof continued Of course, in Formula 2, the ci 10.0 C w in C7

and the function both dépend on the path ( .

If we write = (~ (s)~ then cl ué- 0 cU7 are continued

analytically along the path from Xo to xi . However, this

analytic continuation is trivial, because from the start, the ernï

T at (x ,t ) already satisfies (2)- 8o that
000
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where Ci already are holomorphic in  ô0. In other word_, c1 ... c w

are simply analytic extensions of given holomorphio functions in 6 .

So ci holds all the time. In the saxe the germ H(x,t) arises
J J

by analytio continuation of Ho , so it îs holomorphic everywhere too.

Summing upp we have achieved

+ H(x, t~ hold! where C1 ... C~ and H are holomorphio in B( 6 , E ~ .

At this stage the continuation évidente because
o 0

’% °eSublemma 3 asserts that the analytio continuation along any path y 
i s aohieved by analytio continuations of ’1 ... 9~ along the simpler

paths J which arise in view of the Homotopy Lemma 8.5. So at

this stage the continuation to B(b ,s - S follows from the observation
o 0

already made in Section 6 namely that the freezed functions t  ’j(x1,t)J ’

extend &#x26;2.oa&#x26;g any path f from to inside the punctured dise where
0

t / 0152j(x1)’ and this is true even if multiple zéros occur.
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