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IX.1

Introduction In |1| Kashiwara #m and Kawai made a far-recahing study of

holonomic systems. A basic result is Theorem 5.2.1. in [Zj which

asserts that if 7’}? is a holonomic E -module, where £= 5 is the sheaf

X
of micro=local differential operators of finite order defined outside}:he

o>
zero-section of the cotangent bundle of X, then the extended sheaf £ sz

contains a unique E -submodule W7

reg which has regular singularities and

o o>
satisfies £ Qf %reg = E ’ﬂe m . The proof of this result is quite involved

and my aim is here to present the passage of the proof which appears in
Chapter 4 of [1]. This part deals with prolongation properties of solutions
to over-determined systems which arise from a given holonomic E-module
whose support is the conormal to a hypersurface S in the base manifold.

In [21 Kashiwardand Kawai offers a brief exposition of the proof too, so
here Section 2 only repeats the steps which are necessary in order to

understand how the proof is reduced to a specific problem about prolongations

of solutions to an overdetermined system.

Section 3 - 5 contains the detailed analyis which finishes the proof. ly
presentation may appear to be quite different from the material in [11,
but actually all the essential methods are already giver in [1] s the diffe-

rence is that I have tried to avoid too much machinery based upon local

cohomology, to make the proof more accesible to the analysists,

The material in Section 6-8 contain proofs of various results which
were used before, They can be studied independently of the preceeding
material, but of coure their content is motivated by the fact that it enable
us to prove the Reconstruction Theorem.

A Remark The actual proof of the Reconstruction Theorem contains more
results, see for example Theorem 4.1,1. in [1]. In particular “ashiwara and
Kawai finds particular good filtrations on nolonomic modules with R.S. an-=
we refer to [11] for very interesting comments about this.

The case of holonomic ﬂ-modules. In this case anoti.er method lesds +*o

the Reconstruction Theorem which we brie=flv di-cuss irn ~ation 7.
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1. The case of ﬂ-modules
Before we begin the micro-local analysis, it should be pointed out that

if we work with holonomic ﬂ-modules, where .,Oa vD is the sheaf of

X
differential operators with analytic coefficients, then the Reconstruction
Theorem can be attaclked in a quite different way. This was for example
done in [6,8, 4]..We shall briefly recall how this goes.

First, let ])(X)c be the derived category of bounded sheaf-complexes on
X whose cohomology sheaves are constructible, i.e. they are locally constant
on a complex analytic Whitney stratification { Xa } and their stalks are
finite dimensional éomplex vector spaces.

For a single constructible sheaf 7:, the following basic result
holds, where we put = 0}( to simplify the notations.

using the

o
4.1. Theorem [x!g( 7,0) are sheaves of ;D -modules for each j O and

po
natural action by & on 0 and each of them contains a distinguished

oo
sheaf -/73 of ﬂ-submodules which is holonomic and J) eO \/73 equals
the £xf -sheaf above.
This result was essentially proved in [ 5]. The sheaf % is found

by the use of temperated cohomology as explained in [ & ]. It is also the
starting point for the proof of the isomorphism of D(X)c and the derived

category D(9 )h.r. of bounded complexes of ) -modules whose cohomology

sheaves are holonomic and have R.S.

Well, even if Theorem Te1. is quite intuitive since the ,Dpimodule
structure on these fxt‘-sheaves is clear, the most convenient way to
express M j? arise by the diagonal method. To be precise, in the product
manifold X x X we let 2\ be the diagonal and then we can consider the

derived functors of /Z and of @1 respectively. A basis result is then

1.2. Grothendieck's Comparison Theorem which asserts that if 9_:

is a complex in D(X)c, then the canonical mapping from

R‘;ﬂ( 7:. 2 O) into RC\( F 2 () is injective and its image

is ample enough to generate the hypercohomology sheaves
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l/;s( 'F. R4 O) as :Doo-modules.

00
J.3. Remark Saying this, the .D -module structure arises by Sato's

o (0
cohomological description of D and of D y 1.es these sheaves on X are

A A
equal to the local cohomology sheaves }(Z(ﬂ) and )ﬁ;(n_) respectively,

A
where n = dim(X) and (] = .ﬂx ) OX x and 'QX is the sheaf of

X
holomorphic n-forms.
Using a formula from Verdier's work in [70], we then have the isomorphism

Biom (F, 0) ¥ R, (RMom (F,6) @, 0 ) when ¥ is a constructible

sheaf, and using this isomorphism the holonomic (D-modules ij from Theorem
1.1. arise when we take the hypercohomology sheaves in the complex

R?AJ(R )(onﬂ(ﬂ;,ﬂ) 2, 0).

1e4. The case when 7}];15_ ﬂ -holonomic If 77] is a holonomic sheaf of

D -modules, then £x{°g(@, 7 ) are constructible sheaves for all j. This
was proved in [é] o« It is then combined with the Biduality Formula which
asserts that 1 "x & /;(l)'(omﬁ( o,m) 2, O ) holds. See [ 7] or [Z,Theo-

rem 1.4.9.] for a proof,

Z.5. A formula for ” is now achieved. In fact, given the holonomic

reg

oo
D -module M, the results in 2.2. and 2.4, imply that 7771‘385777 is
found by computing B}A;J(R /(":v( Oy) e &).

We refer to [é’j for a more detailed presentation of the material
given above.

1.6. Some Remarks Even though the methods above lead to a distinguished
holonomic ‘D—submodule of 777“,, it is not at all obvious that this sheaf has
R.S. in the sense of [3]. However, it is a consequence of the Reconstruction

Theorem, that the sheaf found in 7.5. has R.S. See for example Section 6-4

in [1].

1.7. Some explicit formulas Let us finish by saying that the

formulas above can be made explicit. lere is an illuminating example.
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7.8. The case when 777 has pure dimension. In general , if Mis a

holonomic J) -module we let Fk('}ﬂ) be the sheaf of sections in /}] whose
supports are at most k-dimensional., Each Fk(Th) is then a holonomic
JD-submodule of 7, and the quotients Fk(777)/14"k_1 (M) have pure dimension

ky ieees dim(supp(£)) = k hold for any section in this sheaf.

If m now is holonomic and has a pure dimension k, then the Biduality

Formula and the use of an associated spectral sequence gives

1.9. Proposition ;7 an exact sequence
0— 72 g,‘t’g"k ( &!;'k( 7,0), O0) —> W, —>0

where dim(supp(Wk)) < k=2

See [ll.’l‘heorem T.8. on page T4 ] for a similar result. The proof there

can be repeated to give Proposition 1.9. above,

[~ -]
From this, we then find wreg by intersecting ?] with the distingui-

{ n-k

shead R.S. submodule of JSx# :’k ( £>«°D (#,0),0 ), so this shows the

relevance of Theorem Z.1., Of course, the fact that it suffices to prove
oo
the Reconstruction Theorem for the ,,D -sheaves fxf 2:( 7, [ ) when ;t is

constructible, is a consequence of the isomorphism between D(x)c and

2Dy, .

1.10, The canonical filtration To finsh, we recall that the actual
proof in E 1 7 1eads to the existence of & canonically defined good
filtration of a holonomic D-module with R.S. which may have topological
consequences. See U]] and see Section 5-1 in [1] for the construction of

this good filtration.
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2. An outline of the proof

Following [1] we shall describe how the proof of the Reconstruction
Theorem is reduced to a study of a certain over-determined system. So let
X be a complex analytic manifold and let TX(X) = T%(X) - TE(X) be the
complement of the zero-section of the cotangent bundle. Consider then a

holonomic gx-module M which is defined in some open and conic subset

°
Ll of TZ(X). The support of the sheaf 7¥! is then a conic Lagrangian

variety A , Where ./t in general may have singular points. In any case, its

regular part '/lreg =_A.\_/t is open and dense.

sing

2+.1. The existence of 777reg -%'/treg . Using the Classification Theorem

for hol~nomic E-modules with non-singular support, both the existence and

eg on '/treg is easily proved. See [I:Sectlon 1-3]

the unigueness of Wr
for details.

2.2. The unigueness of }”reg . On /Zreg we find the unique g-submodule

- g‘ . ~

[Z] which may be regarded as a kind of Hartog's Theorem for coherent

f-modules, the uniqueness of mreg on the whole Lagrangian variety

follows from its unicueness on '/lreg' Of course, this uniqueness is

stated under the condition that we have found some coherent g-submodule
pO no o0

/V of 777 whicl. has 1.5, and satisfies 777 --M « In fagt, then

f = W holds on .A , and the uniqueness of /Vis a consequence of
reg reg
the cited result, or more precisely of Corollary 1.2.3%. in [I: which asserts:

2.3. Proposition Let 777 be holonomic and let /V be a2 holonomic
E-submodule of 777’0 end let 2€/ bve 4 subvariety witk dim(2) < dim(A) =
= dim(X). Then the following hold

(1) ‘ny loenlly deined cocting o ¢ /—',777‘,&\ ~hict helonss to /Vw

{4
outside %, :cler - 50 [ N

2. - . PR - . N
(2) sny s € (U, M ) which belongs to ./Von 5-% belon. s to /-‘(;‘,\/V).

summinge up ?;7 exists on .A snd i wnique on _4 if it exists,
- o reg reg
®] R &
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So for the proof of existence it is sufficient to prove that mreg

exists locally, i.e. in a small conic neighborhood of a given point P, on

sing® To attain this we can assume that A has a generic position

at the point f,, i.e. that the fiber ﬂxpo is isolated in the conic lLagrangian

variety _/Z. More precisely we obtain this as follows

2.4+ A geometric preparation First, symplectic algebra shows that

there exists a locally defined homogenous canonical transformation x at p,
which maps the germ of/l at 18 onto another germ of a Lagrangian variety

at P, which has generic position. See [Z tSection 1-6] for details.

Using a contact transformation attached to this canonical transformation
we can then assume that .A from the start has generic position at Pye See
for example r111 Theorem 6.1.] and notice also that the contact transformation

” 3 -
is defined locally on E , as explained in flI,Propos:.tlon 11.4. page 182]

2.5« The hypersurface r(_/l) = S . From now on we assume that .4 has a

generic position at p . This implies that if 7 is the projection from *(X)
to the base manifold, then n(ﬂa_A.) = S is 2 hypersurface in X, where 1l

is a small conic neighborhood of P,e

In addition to this the equality ./l: Tg holds in a conic neighborhood

of Py where Tg = the closure of the smooth conormal variety Tg « The
reg
proof is easy and we refer to [1 :Section 4-?] for details,

(-]
2.6. The gp ~module ( « working locally we may assume that { = £n+1

[¢]

where we use (x,%t) as coordinates with x = (%, ...¥x } 2nd t iz distinguished
9 1 w/

because we assume thst the roint Py = (0,0:0,3% . Co here the base point
. .. . n+l ; . ; Y s v o

n’(po) is the origin in € 2nd the hyperzurface & = 17 _/2,.‘ is defined

: - ) ¢ P! D

in some polydisc 2(f,e) = [ 7oyt ¢ [xj < & ond it, v .

-]
“he proof will now employ a certain (/f' -module which we bhe vdin to define.
Tirst, if a > C we put W(a) = { 7x,%) ¢+ oft) < —alixi 4 i1} omd then

is the inductive limit o! %he guotient spaces g A SO A s

a—»C and A are polydises which shrink o tie ori-in in $7 ° .
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2.7. Remark Of course, this means that if Z(a) = { (x,t): Re(t) >

- a(]x| + |t]), then ( is the 8talk at (0,0) of the inductive limit of

1
the local cohomology sheaves J{Z (0 ) where 0 . OEnH .
a

po
It cen then be proved that [ is a left fp ~-module. The module structure

o .
can be made explicit, . In [1 ,Section 3]
Do
a general construction of fp ~modules is made which contains the case
k]
above as a very special case.

o0
2.8. The space Hom f;( mp ’ C ) will now be studied. The crucial
0 o

step towards the proof of the Reconstruction Theorem is to show that this
is a finite dimensional complex vector space which in addition is ample

co
enough to determine the stalk ”/p . Then, by the finite dimensionality and
o

coherence, the sheaf is determined in a small neighborhood of 1 to0,.
Well, we have to clarify the content of this assertion. It goes as follows

2.9. 77] = E/L can be assumed from the start since holonomic
£ -modules are locally cyclic. So here ,C is a coherent sheaf of left

ideals in 5 and the equality%= supp( F/OZ) = 0(,&)’1(0) holds then,

where o( J )"1 (0) is the set of common zeros of principal symbols of sections
in the sheaf Z .

Whenmzf/z is cyclic it is clear that the space

Qo
C’o = Hom g‘; (m=, t) can be realised it follows:

2410, A useful description. An element & in the space above is represented

by some holomorphic function 9(x,t) € 2(7(a)aA) such that R,% eee RO

all extend to O( A), where Ry oo Rk is some finite set of generators

for the left ideal Ip .
(o]

In Section 3 we shall describe in more detail how senerators in ,t

o
. S - Cd . (%
are chosen. The assertion that llom é‘;’( 7))“ ’ [) determnines ﬂ?ﬁ means
o Yo 0
the following: If . € fp is ueh *that £ = ¢ in for a3 0 Irn
e

the solution spaceja,bove, then . btelonms t0 the left ide2l which .C
-
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PR | 5
o3Lerates An g N

‘P
o oo
2¢%1. A Remark Recall here that E is faithfully flat over f o« This

0© o°
is used in order to identify /)1  with £ /%L and so on.

2.12. How to use the result above As we have already said, it is the

assertion that the solution space Hom 5;( 7}7”, [) determines 7)[;
o

Po (]
which is the part of the proof to which the subsequent sections are devdted.

The proof of the reconstruction theorem is then done as follows:
2.13. The Imbedding Lemma First, assuming that the results from Sections

248 - 2.10, hold we can find some a > O and some small polydisc A end
a k-tuple 9, ... 9, in O(w(a)n/\) which give solutions and induce a basis

o
for the k-dimensional complex vector space HOM£;(?)7p y C).
° o

A notable point should be mentioned here
2.14., Lemma If a > O then W(a)NS A A is empty if the polydisc A is

sufficiently small.,
This is easily proved, using the fact that c’po by assumption is

isolated in Tg + See also [Z:Lemma 4.2.1.] for a proof.

Choosing /) so small that W(a)NANMS is empty, it can then be proved

that the holomorphic functions ?, ... 9, above can be continued to (in

general) multi-valued analytic functions in /) \ S.

In Bection & we shall prove this existence of analytic continuations.
Admitting it for the moment, we then get a local system ; in A\S, whose

stalks @(x t) = the fi-subspace of 0( generated by all local branches
?

x,t)
of the functions ¢1 see Wk respectively.

The multi-valued extensions of the 9-functions have finite determinatic
so the stalks of‘ﬁ consist of finite dimensional fi-spaces. At this stage we
make use of a result whose full proof requires Hironaka's Desingularisation
and it goes as follows

2.15. Existence Lemma Given § as above there exists a section
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e W
Q = Q(x,t,Dt,Dx) in F( A, 7 ) - where D is the sheaf of differential

operators on En+1 of infinite order~ and another local system o4 in ANS
whose stalks 70(- again are f-subspaces of o and they satisfy:
x,t) (x’t)

(1) The equality QAF= @holds, i.es Q operates on 0 in the usual

way and maps the subspaces '7/"2){ £) onto ﬁ(x %) for all points (x,t) in ANS
14 ?

(2) f)‘fis the local system generated by local bracnehs of finitely many

Nilsson class functions 901 vee \fm - all defined in A \S.

2.16. The sheaf }(=Y’ '1(0). Using the fact that \}, arises from

Nilsson class functions, the theory about holonomicﬂ -sheaves then shows

that there exists a unigue coherent sheaf )(of left ideals in ,,D which

satisfies

(1) 1f (x,t) e AN\ S then the stalk )((x,t) = { Q€ ,‘D<x,t) : Qg = 0 in

O(x,t) for all germs g in the subspace YEx,t) }
(2) The sheaf °D/){ is holonomic and has no (0 -torsion.

Well, its proof is not easy, we may refer to [ﬂ,Theorem 4.,8.,30 on page
270 ] . See also [5] ana [1, Secdren 2]

2.17« The Imbedding Lemma We can introduce the holonomic g-module

E' @ (oo/)f ) = |/V and then the equality Q'Yr= ® ana X - e -1(0) on
o oo oo > o
2\ - S, imply that the E -linear mapping from 2/} = & /85 into .A/‘

determined by the right multiplication with the section Q is well defined

and it is injective ih a smell neighborhood of Py because the solution

oo
space Hom S.p‘ ( m:, L) determines %a in a neighborhood of p_.
o 0

D
Well, here the holonomic i)-sheaf "‘j/;{" is of the so called Deligne
type, and the result in 2.17. is the content of Theorem d4.1.1. in [ 1 ]. It
o
is called the Imbedding Lemma since it shows that 777 can be imbedded into

o
Eﬁ» 72_ where 77 is ﬂ-holonomic and of Deligne type along the

hypersurface S = n(_/f,), where we aasumed that __,—Z = supp( 71 ) has a generic

position at P, from the start,



IX.10

218+ The final part of the proof Once the Imbedding Lemma has been

o . [ iy

proved, it can then be proved that '”/_A,/ contains a ,@-submodule 770

oo D oo
so that the image of M in E?o( /}()equals E fﬂ 720 . To prove this, Kawai

and Kashiwara also makes use of the Imbedding Lemma applied to the dual
holonomic & -sheaf M * = £>(1£.1+1( m, £ )e The details can be found in

Section 5=2 in II j.

2.19., The extension of Zﬁreg « If we have obtained the equality
[ ad o
777 = f %no where ?’.?.’o is a holonomic a@-submodule of ,‘U/'{/ which has

Deligne type, then the equality 777 = gﬁ?Z easily follows on
reg o

the open subset Tg of/z .. Next, gﬁ 770 18 a holonomic £-submodule
reg
po
of /N defined on the whole variety _/l, so from the discussion in Section
2.2, we conclude that f Q?ZO is the required sheaf mreg ,/

2.20, A sticky point In general, if 72 is a holonomic 09 -module of

afora a hyrPelrsariace
Deligne typef it is not obvious that f%}?’l has R.S, in the sense of [3]

because it involves a condition on all components of its characteristic

variety, while the Deligne sheaf n a priori only has R.S. along the
component of supp( fﬁ 72) given by Tg . However, during the construction
reg

above the Deligne sheaf 'o//C is quite special because its characteristic

variety is small, i.e, it is the closure of the smooth conormalT* so that

'
fﬁ°bj}( has R.S. in the sense of [ 37.

A notable point is then, that using the Reconstruction Theorem, it can

be proved that any holonomic ﬂ-mpdule of Deligne type has R.S. in the sense
of [3 'I. See [Z sTheorem 5.2.3‘_] and observe that this important result
cannot be proved until the whole micro-local calculus has been used to vrove
the Reconstruction Theorem for holonomic g-modules. Of course, this is
natural since the definition of R.S. is already of a micro-local nature.

Summing up, we have now finished a brief sketch of the proof, without
any details. In the subsequent sections we shall give the details which

lead to the assertions made in Section 2.8.-2.10.
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3. The Jeii ideal ,L,po N Cpo(x’t’Dt)<Dx>

We keep the notations from Section 2. So m - F/OZ and then supp(#1) =
= o x)“1(o) = Tg close to the point p_ = (0,0,0,d4t). The fact that the

fiver ﬁ:xpo is isolated in T; easily implhes that the hypersurface S = p-1(0)

where p(x,t) is a Weierstrass polynomial with respect to t, i.e. we have
p(x,t) = t% + f1(x)te-1 + oeee +fe(x)
5.1. The subring £ (x,%,D;) <D, > will be used in the sequel. An
o
element there is given as a finite sum SAa(x,t,Dt)Di extended over
finitely many multi-indices a = (a1...an) while Aa(x,t,Dt) as indicated are

germs in Ep which are independent of the Dx-va.riables.
o

Using the fact that c‘iao is isolated in of I)"1(o), divisions in fp

o
show that the left ideal 'Cp is generated by elements which belong to
: o
the subring £ (x,t,D,) < D_ >.
Py t b ¢
This is useful, because now the solution space a%mé-;( ﬂ[;’, C) is

o (o)

conslista of elements § in C for which R1E = se0 = RkE = 0 where R1 cee Rk

is some finite subset of "(p o E; (x,t,Dt) <D, > which generate the

(o) o

left ideal I in the ring g .
Po Po

This simplifies the subsequent analysis because actions on @ by

elements in Ep (x,t,Dt) < Dx > are rather easy to describe., We shall do
o
this now because explicit formulas are needed later on..
! a
3.2+ The action on 0. Let R = i\.o[(x,t,l)t)Dx be given. Each
germ Aa(x,t,Dt) can then be expanded with respect to D, so we get
oo
- A 4 -v
A (x,%,0,) = gqj'a(x,t)Dt + k, o (xs8)0}
dzo va?l

where the first sum is finite since 0 £ j £ ord(Aa) hoils chere, Corlecting

all these expansions we find that R = Q + K where Q = 1y a(x,t)D_‘ZDi
?

is a section in ﬂ, defined in some neighborhood of the origin, while
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1
K .—.ZZ kv'a(x,t)D;VDz only contains negative powers of D,.

00
3.3. The kernels Ka(x,t,u) = Skv a(x,t)(t-u)v-1/(v-1)! are now
v=1 '

introduced in order to define the action by R on 0. 0f ocourse, the reason

why these kernels are introduced is that negative powers of D, should

t
produce primitive functions with respect to t, and we may observe that if
?(x,t) is a holomorphic function and if v > 1 and t, is some given point

£ .
then the integral f (t-—u)v-1 /(v-1)l9(x,u)du is the v-th primitﬂe of ¢
t

o
with respect to t.
This suggests the following

3.4. Definition For a given germ 9 in O&x ot ) we define
R o’ "o

t
RP(x,t) = Q(x,t,Dx,Dt)‘P(x,t) +2f Ka(x,t,u)Di(P(x,u)du
x t
0
where the integrals are defined when (x,t) stays in a small polydisc A o
centered at (xo,to) so that the germ 9 belongs to. U(Ao). The integration

is then taken along the straight line from to to t in the complex u-space.

3.5 Remark about the convergence Of course, the action by R on a(x t)
’

is only defined when (x,t) is close to the origin. For example, we can find

60 and €, SO that all the coefficients of Q, and all the kernels Ka(x,t,u)

are holomorphic when le < 60 and both |t| and Iul are < €y

Observe here that Ka(x,t,u) indeed are holomorphic in a neighborhood of

the origin in the (x,t,u)-space because Zka v(x,t)D;v belong to Ep
9

o
which implies that there exists a polydisc A and constants A and B so that

v'x,

Summing up, if R, ... R, is a finite subset of é;o(x,t,])t) <D, >

¢ O(A) and the sup-norms |k_ [, < A(v.[)Bv for all v.
a VX A —

9

then there exists a polydisc A so that R, .. Rk define

1

f-linear operators on the stalks &) ) for all points (x,t) inside A.

(xvt
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A. The local solution spaces L:J(XO}

From now on we fix generators R, ... R wiflch belong to fpo(x,t,Dt)<Dx>
for the left ideal Zp . By coherence it then follows that
Yo
a(f“ = £R1 + eee + ng holds in a conic neighborhood of Py and
since supp( E/,K.) = T]S‘ we can then find a small polydisec B(Go,eo) =

= { {z,%) ¢ x| < 5, and l[t] < €y } such that the following hold:

(1) L = £ Ry + eee ERk holds on Tg where S = n(J) ﬁB(&O,eo)

(2) Both 6, and € are chosen so small that R, ... R opergte on 0
inside B(&o,eo) as described in Section 3.

In addition to this we shall need some elementary facts about the

hypersurface S. Recall that S = p'1(0) where p(x,t) is Weierstrass with

respect to t. As usual we then choose 60 < < € and in B(&o) = { x: xl < 60}

we find a hypersurface Z = the local of the discriminant of p, such that

the projection (x,t) =~»x is an e-fold vovering of (5-2) onto B(&o)-Z. The
following notations will be used to describe this
Notations Put B’(so) = B(8,)-Z end if x & B’(so) then we get the

roots a, (%) eoe am(x) which give the points (x,aj(x)) on S, and actually

they all belong to the regular part sreg'

4.1. The points Qg(xo) on Tg . When x_ is given in B’(ao) then the
reg

x . .
smooth conormal ‘I‘Sm"g contains the points ’73(::0) = (xo,aj(xo):dp(xo,aj(xo)

and using the classification theorem for holonomic £-modu1es with smooth
support, applied to /M = g/,z: at the points Ug(xo}, we arrive at

the result to be discussed below. First we need more notations.

4.2, The solution spaces Z;(xoztj: ‘Aj) . Let x ¢ Bz{éo) and iet

Aj be a small polydisc centered at (xogaj(xo)) and let tj be a point in

the complex t-space such that (xo’tj) is outside S. New R‘l sae Bk operate

on 0(

X ,t.) and we say that a germ ¢ there is a local solution il
o]
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A
: %
s

. . «
all the functions Ri‘P(x,t) = Q.i(P(x,t) + L )t Ki'a(x,t,u)D{P(x,u).

extend to A,j’ i.e. if they belong to Of Aj).

Of course, if ? already belongs to O(Aj) then R, P ¢ O(AJ) for all
1 i £ ke So we are only interested in the non-trivial solutions, which
consists of the quétient space of all solutions/trivia.l solutions. This
is a complex vector space which we denote by ﬁ:j(xoztjz Aj) and they
ares defined provided Aj is a sufficiently small polydisc centered at

(xo,aj(xo), j.es. it suffices to know that Aj C-B(Go,eo).

Well, this is just a definition. The result which can be proved is now
the following

4.3. Proposition Given x in B‘(éo) and some 1 { j { e there exists

®
a polydisc Aj cehtered at (xo,aj(xo)) such that the following is true
for every polydisc Aj CA; and any point tj chosen so that (xo,tj) is
in Aj - 5 we M.‘
The solution space Cj(xoztj: Aj) is finite dimensional and its

dimension is independent of both Aj and ¢ j and equals the multiplicity of

the stalk of £ /L  at the point 7’3(:: o) defined in 4.1.
4.4. Remark The assertion above uses different notations as in | Z |

where our solution spaces [ j(xozt gt Aj) are interprg-.ted from the

vector space H°"’”f;«:j(xo) ( mézxo) ’zsfr
J

) where Ty = (xo,aj(xo)). However,
the actual proof of the classification theorem and the fact that the sheaf

L is generated by sections R, ... R_which belong to E(x,t,Dt) <D_>
implies that the "naive" solution spaces Kj(xo:tj, Aj) introduced

above are the good micro-local solution spaces which are ample enough to
00

93("0)

determine the stalk 77? also.

To be precise, rather than working with g/,(v, we may work with
the sheaf R/( £R1 + oeee + ﬂRk) where ® = £(x,t,Dt) <D_ >, and the

claim that the solution spaces (j(xogtj, £ ) are ample means this
J



IX.15

o2
4.5. Proposition If R ¢ fp (x,%,D,) <D > so that R is a finite
(o}

a -2
sum 2’Aa(x’t’Dt)Dx where Aa‘* fp (x,t,Dt) then R operates on O inside
\ )
B(&o,eo) if 6 and € are small. If R then is the zero mapping on a
solution space Zj(xoztj,Aj)- where ‘ﬂj is some small polydisc centered

®
at (x ,a.(x)), then the image of R in £ belongs to the left
o’ j\o Qa(xo)

ideal which L generates there, Finally, this conclusion holds for each

1__<_,j_seo

Well, we do not try to provide detailed proofs of the assertions made
so far. As indicated they are rather easy, once the classifization theorem

has been proved. To finish we give
4.6. Definition When x_ 53"(50) and when 1 < j < e is given, then
Cj(xo) is the inductive limit of the solution spaces [j(xo:tj, Aj)

as Aj shrink to (xo,aj(xo)) and (xo,tj)" Aj - S.

Using the version of Hartog's Theorem, as explained in Section 2.3.
co
together with Proposition 4.5. and divisions in the stalk fp which
o

reduce any given germ P there to a germ which belongs to

oo [ od
ffe Ipo + €Po(x’t’Dt) <D_ >

and the fact that if x is given then the e-tuple of points (xo,aj(xo)):

1 < j £ e provide points on every component of Sr

eg’ imptlies

4.7T. Proposition The direct sum Z',l(xo) ® .00 O te(xo) is a finite

dimensional complex vector space, and as xo-—>0 these spaces are ample

o
enough to determine m p
o

Returning to the notations used in Section 2.7., it remains now o
. i M Co
show that there exists a surjective mapping from Homé-p { :'?]p ’ ) onto
(o] o
® Z'.(xo). provided that x is sufficiently close to the drigin.
J

In other words, we must prove that any e-tuple of local sclutionc
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can be obtained from a '"global solution" . The remaining sections are

devoted to the proof of this. In I 1] the surjectivity is proved by means
of a quite general machinery. See for example [1 sProposition 4.4.ﬂ. Here

we try to supply a more self-contained proof.

5. The passage from local to global solutions

Now we enter a more detailed analysis. Recall that generators R1 coe Rk
have been introduced. The fact that the fiber c’po is isolated in c(.Z,)"1(o)
can be used to show that the k-tuple R1 oo Rk contains special operators

Po’Q1 e+ Q which we describe below.
9:1. P = Po(x,t,])t) has order zero and o(P) = p" for some w > 1. So

introducing a kernel for the part of order -1, we can write

w
Po(x,t,])t) = p(x,t)" + jK(x,t,u)du w
w w_y
" 5,2.To each 1 < i < n, the operator Q, = D + ZA (x,t,D,)D
-7 = i x5 ol v t x5

where ord(Av) L v for each 1 { v { (LW and W is some positive integer.

5.3 Remark The existence of operators Po’Q"I cee Qn in the stalk IP
: o

follows by division theorems in CCP . See for example [Z t1Section 5-5] for
o
a similar construction, where the notations differ from ours since the

sheaf 77713 not assumed to be cyclic from the start.

5.4. Semi-local solutions

Recall that we always consider a polydisc B(éozeo) where actions by

R1 coe Rk on 0 exist. In general we shall let 60 < < €y * In particular

we can assume that 60 and € have been chosen such that if to = -eo/4 say,
then (x,to) is outside the hypersurface S for all |x| < 6, « In fact, &
0

may even be chosen so small that when x_ GBz(éo) then the roots a).(xo)

all have absolute value < 50/4. Having made this choice we give

5.5. Definition A germ ? in Ozx £ ) is called a semi-local solution
o'’o

if there exists some & > O such that Ri‘? are holomorphic in the polydisc
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B(xgst,:656,/2) = { (x,%) ¢ |x-x | < 8 and [t-t | < e /2 }.
A remark Since X, €& Bx(éo) here we observe that if & is sufficiently small
then there also exists some € > O such that the opemn sets
Wj= { (x,%) : Ix-xol < & and lt—aj(x)! < &} are pairwise disjoint,

which amonuts to say that S nB(xoztozé,eo/2) is decomposed into e components

given by the equations t = aj(x).

5.6, The analytic continuation Given a semi-local solution 9, the fact
that P9 € O(B(xo,tbzézso/z) implies that 9 extemds to a multi-valued
analytic function on B(xo,tozé,eo/Z') - Se. Indeed, this is a consequence
of the analysis to be given in Section § . See alse P"’r”‘.&m 6.10.

Admitting this, a semi-local solution produces local solutions. In fact,
to each 1 { j e we choose some path Ij in the complex t-plane whose
initial point ij(o) = t, while the end-point rj(1) = tj is close to the
root aj(xo). At the same time (xo, J/j(s)) stay outside S for all 0 < s<i1
where the path Xj is a continuous mapping s-—’)'j(s).

Given ?, we then take its analytic continuation along the path -rj

where r‘j(s) = (xo, )’j(s)) and arrive at the germ (‘P)r.j in (}(xo't:j)

which then gives a local solution, i.e. an element in Z.’j(xo). So for an
e-tuple of paths l1 cos )‘e chosen as above, we get the e-tuple af local
solutions (‘J’),-.1 © .o0 @ (‘P)fe in the space @ Cj(xo). The material to be
presented in Section 6.]% gives then

5.T7. Proposition Given any e-tuple (51...59) in L;.(xo), there exist

9. %
i - i d path cee so that = for each j.
semi-local solutions? and paths . te Ej (3),-3 T 3
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5.8, The passage from semi-local to global solutions

Recall that the family R1 eee Rk contains the operators Q1 o Qn. They
are of a form which enable us to apply the Cauchy-Kowalevsky Theorem and
show that a semi-local solution 9 can be replaced by a global solution

without changing the images in @ Z;(xo). The result we need for this is

5.9« Proposition There exist positive constants 61 and K- which only depend

on the operators Q1 coe Qn’ such that the following is true:
If o€ Cﬁ%
1; in <jk

x 5t ) is a semi-local solution then there exists another germ
o’

which satisfies
xo,to)

o~
(1) ® - 9 extends to 0(B(xo,t°:6,eo/2K) for some € > O

(2) R‘:i belong to O(B(xo,tozs,eo/zK) for att Tsvs k.

(3) The germ‘$’is holomorphic in a polydisc B(xo,to:61,e) where € > O

in general is a small number,

Conclusions The result above holds for any point (xo,to) which is
sufficiently close to the origin. Keeping 61 and K as above we make a good
_ choice. For example, we choose Itol < e°/4K and choose 60 so small that the
roots ,aj(x)l < e°/4K for all 1 < j < e and all x in Bz(bo). Then (1) in
Proposition 5.9. implies that the images of ¢ and 9 in @ C;(xo) are equal

because the polydisc B(xo,tozé,so/ZK) contains the points (xo,aj(xo)).

Next, since the operators R all belong to é;)(x,t,Dt) <D > it is
o
clear that (3) implies that R;; also are holomorphic in the polydisc
B(xo,t°:61,e).

Well, then we combine this with (2) and a classical result- due to
Reinhardt- which implies that the functions R;g actually are holomorphic in

the polydisc B(xozto=61/2,so/4K), : Finally, with
6, and K fixed here we may assume that ,xol < 61/2 and that 'tol < eo/4K

so that R;$ extend to holomorphic functions in a neighborhood of the origin

and -this means that‘$’is a global solutione.

P

Of course, to finish the proof we then have to show that the gexm @
extends to a multi-valued function in A - S for some polydisc A centered at

the origine. This analytic extension is not at all trivial to achieve, the
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proof uses method similar to those in the work by Nilssopn. See |I%| and [I‘v']

and it was also used by Kawai and Kashiwara in [1]. In Section 8 we
~
shall describe how the analytic continuation of 9 is proved.
Summing up, the material so far has finished our account of the proof of

the Reconstruction Theorem,; where 3 essential details have been omitted,
namlely Proposition 5.7. and 5.9. and the fact that global solutions, which
a _priori consist of germs ¢ for which RV‘P extend to O(A ), extend by

themselves to multi-valued functions in A- S.

THe remaining sections contain material which supply proofs of these

assertions.
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6. The integral operator p' + \fK(x,t,u)

To simplify the subsequent notations we shall replace X, by O and to by
0 and normalize € to be = 1. The assumptions below reflect the situation
which occurs in Section 5.4.

So we consider a function p(x,t) = Z7kt-a3(x)) where the roots
a1(x) see ae(x) are distinet for all |x| < 5, and also O < Iaj(x)l < 1 hold
then,

Let also K(x,t,u) be holomorphic in a neighborhood of the closed
polydisc where lxl‘i 60 and both Itl and Iu] are < 1.

To a given postitive integer w we then study the operator pw + jﬂK

and we begin to study

6.1, The freezed equations With lxol < 60 given we consider the operator

doxo which maps a germ 9(t) at the origin in the complex t-plane to the

t
gern  P9(t) = plx,,t)9(t) + § K(x_,t,u)%(u)au
(o] (o)

We say that a germ ¢ is a solution if F;:¢ extends to a continuous
o

function on the closed disc D = { t:|t| < 1 } which in addition is holomorp-

hic in the interior D. In other words, ? is a solution when Gi ? belongs
)

to the Banach space A(D), where A(D) is the famous disc algebra.

Of course, if the germ 9 already belongs to A(D), then 9 is a trivial
solution. So we give

6.2. Definition The space a; = solutions/trivial solutions, is called

(o]

the space of non-trivial solutions to fi .
o

Now we can prove

6.3. Proposition 8; is an W-dimensional complex vector space, where
o .

w= Weo
The proof is an easy consequence of the following two preliminary
results,

6.4, Lemma J%{ is bijective on the space of germs at the origin.
o

t
6.5. Lemma The operator «k; g =‘g K(xo,t,u)g(u)du is compact on A(D).
o [0}

We leave out the easy proofs .
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Proof of Proposition 6.3. The operator g —» pw(xo,t)g(t) on A(D) is

dimenaion ‘
obviously injective, while its cokernel is¥= w». Since )C: is a compact
. (o]
pertubation by Lemma 6.5. , it follows that Px has index  as an

o
operator on A(D). It is easily seen that its kernel is zero and hence its

cokernel is W -dimensional. Choose then h, ... h,, in A(D) so that

1
A(D) = Im( "o) ® £h, ® ... ® Ch,, holds.

Using Lemma 6.4, we get unicue germs (Pj satisfying Px ‘P’j = h;] in C{t}
(¢]
and then it is easily seen that ‘P,' cos ‘Pw is a f-basis of (x .

(o)
6.64 Equations with parameters Since solutions to the freezed equations

have been found in an effective way, we expect that they can be obtained
in such a way that their dependence on x is analytic. Well, the result below

shows that this is so

6.7. Theorem There exists some € > O and holomorphic functions
91(x,t) eos P,(x,t) ,all defined in the polydisc B(ao,e) such that:
on with lxol < & = the functions @, (xo,t) cee @ (xo,t) is a basis for

the non-trivial solution space Zx .
o

Proof Suppose first that we have found functions H, (x9t) oo Hy x,1t)
which are holomorphic when lx[ < 60 and Itl < 1 and continuous when [t| = 1

such that A(D) = Im( Px ) @ H1(x°,t) © ... O H (xo,t) hold for every x .
0

Then we find the function ‘Pj(x,t) by solving the equation

qu’j(x,t) = Hj(x,t) and Theorem 6,7, followa. It remairs only to see

why the family H, ... Hy, exists. For the unpertubed operator pw y the

1
W ~dimensional cokernel spaces are generated by the holomorphic functions
Gv,j(x,t) a pw(x,t)/(t-aj(x))v where 1 < j < eand 1 < v < e. The
existence of H1 eses Hyy for the pertubed operators follows easily then. In
fact, the standard proofs of the Index Theorem for compactly pertubedzd

linear operators on Banach spaces, gives the result below which is applied

to conclude that H1 see Hey existe



IX.22

5.8, Pmonngitiaon  Let xp.>Tx be a holcemorphic¢ function, defined in a

neighborhood of the polydisc lxl £ &, with values in L(B,B) = the space of
bounded linear operators on a Banach space. Assume that Tx are injective for
all x and that there exists an integer (W and B-valued holomorphic functions

G, eee G, such that the decomposition B = Im(Tx) @ nc1(x) ® ... ® £6,(x)

hold for all x. If now x-—-ﬁKx is holomorphic, where Kx are compact operators
on B and where Tx + Kx are injective for all x, then there exist B-valued
holomorphic functions H, ... Hy, such that B = Im(Tx+Kx) @ mHj(x) hold

for all x.

6.9. Remarks aboﬁt Theorem 6.,7. Consider one of the 9-functions in
Theorem 6,7+ For example, put ¢ = ?1 to simplify the notations., If we first
introduce the positive number s+ = inf { Iaj(x)l : 1< J<eand lxlﬁvéo }
which by assumption is positive, then the fact that

p(x,t)9(x,t) + St K(x,t,u)?(x,u)du belongs to B(5°=1) and that
p(x,t) # when [t] </“'and lxlég 5.+ easily implies that ?(x,t) extends to
a holomorphic function in the polydisc B(&o,/“) = { (x,%) ¢ |x] < 5, and
It <p}e

In fact, this follows from an estimate of the Taylor expansion P(xyt) =
z ¢j(x)tj and the fact that the kernel K ¢ ((B(5:1,1)). The question

arises if we can continue 9 to a larger subset of the polydisc B(6°,1);

This turns put to be true. For the proof we use the assumption that the

roots a1(x) ces ae(x) are distinct and the result is

6.10. Proposition Zach functjon Qj from Theorem 6.7. extends to a
(in general) multi-valued analytic function ou L(Go,1) - p-1(0).
6.11. Remark The proof is actually not as trivial as one may expect,
using the easy observation that if x_ is fixed. the fact that ¢(xo,t) is

a solution to the freezed equation, and an easy 1-dimensional analysis then
implies that t —>¢(xo,t) extends to a multi-valued function in the punctured
“dise {t : [t] <1 and t # aj(xo) for all j }.

In fact, even though ? continues analytically along the paths described
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above, we cannoct conclude that ? then prolonges to a multi-valued

function on B(60,1) - p-1(0) because we must verify the existence of
analytic continuations along other paths too. However, using some elementary
facts in homotopy theory, this can be proved and we shall describe this
method in the proof of Theorem 8. 4% which can be used to prove Proposition

6.10. too.

6.12. How to deduce Proposition 5.7. Let us first remark that the

solution spaces C;} to the freezed equations have as many non-trivial
o
solutions as we could hope for. So this means that Theorem 6.7. really gives

the optimal number of non-trivial solutions. This has the following

nse :
consequence. ‘and some 1< j< e

Let lxol < 6olée glven ana suppose that “33 = B(xo,aj(xo):é,e) is a

Aﬁj (\p_1(0) is given by the equation t = aj(x).Let tj be a point

!t,j"aj(xo)“, and (x,t) # p-1(0) when lx-:xol<6 and le f¢ sz ) satisfying :
J

o’t

t

T he germs p(x,t)"£(x,t) + 5 K(x,t,u)f(x,u)du extends to the whole
t
J

polydisc ‘33. So f is like a local solution as described in Section 4,2,

Let then x, be given with |x1—x°, < 8, A 1-dimensional analysis and

the fact that ¢1(x1,t) cos q£$x1,t) is a basis for Z; , implies that there
1
exist unique complex scalars c1(x1) ceo c“jx1) such that:
(1) f(x1,t) -z cj(x1)$3(x1,t) is holomorphic in the disc ]t-aj(xo)l< £

~

o~
where ¢4 ... ¢, are local branches of the multi-valued extensions of

9, +e+ 9, at the point (xo,tj) - all obtained by a continuation along

a fixed path ) from (xo,o) to (xo,tj).

\ -1
Recall also that t, is chosen so that (x,t.) stays outside p (0)
jL ~ v omdd f{éb
when lx-xol < 8. Hence ¢1 see Quu existl® when fx-xO! < 5 [so the scalars
c1(x) ees C{X) can be determined for all lx-xof < &, and by their

uniqueness they will be holomorphic in the polydisc lx—xcf < b,



Summing up, we have found

6.13, Proposition If f ¢ C%X £.) is a local solution then there exist
0?"j
holomorphic functions 01(x) eoe Cop(x) defined in some polydisc B(xozé)
w ~
so that f(x,t) - £ ¢.(x)9,(x,t) belongs to O(B(x sa.(x ):6,¢€)
g V'V 0o’ ‘o
A Remark During the preceeding discussion we were choosing analytic
extensions of the (W-tuple 9, ... 9, . The cholce of a path ) does

determine the w-tuple c, (x) ooe ¢ (x) then. However, the fact that

c1(x) ees C,,(x) exist does not depend on the chosen path Yy from (xo,O),
to (xo,tj). The reason is that the w-tuple (‘P1 ees 9, ) determines a

local system of rank W in B(5_,1) - p (0). -

The precise meaning of this assertion is

6.14. Proposition Let ) and D be two paths in B(60,1) - p'1(o)
having )’(o) = M(o) = (xo,o) and }(1) =A(1) = (x1,t1). By analytic

contonuations along 1 and along D respectively, we get wW =tuples of germs

3 .
in 0(3:1,1:1) denoted by { (‘Pj)), } ana { (‘PJ.)A ; respectively. Then there

exists an invertible matrix A(x) of size (%, w) with coefficients in

= A ;
the local ring 0}{ s such that the vector (QJ)) (x) ((PJ)J in

1
w

g2t
Ve leave out the proof, which again is an ecsy consequence of 1-dimen-
sional analysis. Finally, at this stage we leave it to the reader to

deduce Proposition 5.7. from the detailed material above,
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7. A Cauchy-Kowalevsky Theorem

The operators Q1 coe Qn, introduced in Section 5.2. are of the so
called Cauchy-Kowalevsky type with respect to Dx oo Dx .respectively.
1 n
Proposition 5.9, is an easy consequence of the Cauchy-Kowalevsky Theorem,

applied to each of the operators Q1 coe Qn and a classical result about

analytic continuations in Reinhardt domains. The details are as follows.

7.1 The Cauchy-Kowalevsky Theorem for each Qi will first be recalled.

Te2. Proposition f?constants K and 61 such that the following two
results hold for each 1 i < n
(1) If ge Ca(B(xo,tozé,e) where |x0l+6 < 8 and ltol + & < e then
the inhomogenous equation Qih = g is solvable in B(xo,tozé,e/K)
satisfies Q.9 = O in o then 9 extends
i (XO,tO)

to a polydisc whose xi—radius is 51, while the radius with respect to other

')

(2) If 9e 67(
XO

coordinates x1 coe xi coe xn and t remain small.

Applying Proposition 7.2. n times, i.e. to each Q,1 vee Qn we get
Te3e¢ Corollary Let ¢ be a germ in C%xo’to) such that

~
Qi?eaé(xo,tom,eo/Z)) for all i. Then there exists another germ ¥ in

satisfying
(xo’to)

~
(1) 9 - 9 is holomorphic in B(xo,tozé,so/ZKn)
N -
(2) The germ ?(x,t) is holomorphic in B(xo,t0:61,e) for some small € > O
(3) Q{? are holomorphic in B(xo,to=6,ao/2Kn) for all i.
A Remark Notice here that § is a small number, i.e. ve study functions

which from start are defined in small neighborhoods of X

Sketch of proof First the inhomogenous ecuation Q1g = 1,9 irc solved
I

so thgt g belongs to Cj(R(xo,tozé,so/2K). Put then 9, = ¢ - ¢ which then

is x,~holomorphic in a disc of radious &, by (2Y in Frovwosition Te2. ‘'hen

the inhomogenous equation O, h = @1 is solved and we oput ¢. = --h,, 2nd ro

N ’ - N\ - -
on. The function ¢ = ¢ -aticfies {1)={2) in %ho “ovrollaxr.
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Tede An improvement of (3) in Corollary 7.3. For a given i the

function Qi¢ is holomorphic in a Reinhardt domain centered at (xo,to), i.e.

in the union B(x_,t :8,,¢) UB(xo,toxé,eo/ZKn ) and this implies that

these functions extend to be holomorphic in the polydisc B(xo,to,61/2,eo/4Kn)

Te5.» How to deduce Proposition 5.9. Well this is otvious because the

operators Q1 cee Qn are present in the family R1 coe Rk . Of course, the
constant K in Proposition 5.9. should now be chosen as 1/2Kn with K as
in Corollary T.3.

Notice here that (2) in Proposition 5.9. follows from (1) and the fact
that ? from start is a semi-local solution. So the "adding of equations"
does not change anything in Proposition 5.9., simply bevause the semi=-local

solution 9 was given.
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S anaivtic continuations

In this scection we shall study analytic continuations of certain inte-
grals. We are going to use methods similar to those employed by Nilsson in
[12] and [/%]. Let us begin with the following set-up.

8.1, p(x,t) = £ + _S’1 (x)te"1 + eee + fe(x) is a reduced Weier .trass

polynomial, where 5’1 veo ye are holomorphic in a neighborhood of |x|_<_ 60

The roots a1(x) coe ae(x) have absolute value < 1 ,and we also assume

that t  is a given point such thet t_ # aj(x) for all j and all x| < 5, -

8.2. The set B¥ = B(5_,1) - (SUZ) where S = p~'(0) and Z is the locus

of the discriminant of p, i.e. Z = { x ¢t At least two roots aj(x) are equal}

8.3. The kernel K(x,t,u) is holomorphic in |x| < &, and both |t] and
[ul < 1.

Out aim is then to prove

8.4. Theorem Let ¢ ¢ ¥ for some |x | < & and assume that ¢
—_— o (xo,to) o o

can be continued to a multi-valued analytic function-ﬁ in B® . Then the
germ at (xo,to) defined by
t
‘Po(x,t) = ft K(x,t,u)?o(x,u)du also extends to a multi-valued

o
analytic function \Pin B~ Finally, if '§ belongs to the Nilsson class, so

does \P

The proof of the existence of the multi-valued extemsion of ?o is an

easy consequence of the following elementary result.

8.5. A Homotopy Lemma Let Y Ve a path in B* having (xo,to) as
initial point. Write J (s) = (gx(s),yt(s)) for 0 < s < 1 and let us put °

X, =d’x(1) and t, = J’x(1) so that (x1,t1) is the end-point of [} .

Then we get the path F in B®* with F(s) = ( )/x(s),to) which has
(x1 ,'to) as end-point. With these notations we have:

Claim = a path,§in the punctured t-disc = { t : t # ay(x,) } which
moves from t, to t,, such that J is homotopic tc the composed path

~ A
$o [T in B* , where ¢(s) = {x,‘,_j’,(s)) for all o < s < 1.
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rrovi of ‘theoxwen 8.4. Using the homotopy lemma, the eximtence of . the

multi-valued extension § easily follows. If ) is a path in B* with ‘y(o) =

(xo,to) then the germ ( ?2)1 which arises by analytic continuation along

is given by the following sum:

Jt K(x,t,u)?(x,u)du + K(x,t,u)(?o)y (x,u)du

o t1

where (QO)J is the germ atazgf end point § (1) = (x1,t1) arising by the
analytic continuation of ?c‘. n the first integral, the integration in the
complex u-plane is along the path 57 from 8.5, and during this integratior
we have considered the continuation of ?o y first along the path- /ﬂ from

A
(xo,to) to (x1,to) and then followed along the path §£ .

The case when @ belongs to the Nilsson class Using Definition 4.3.4. in

[T?,page 255], the proof that v belongs to the Nilsson class if @ does
is ancved as follows. Given the end-point (x1,t1) of a path ) we define
the number /Ac(x1,t1) = inf { lt-aj(x1)l, 'cj(x1)-av(x1)l : v # j and both
v and j from 1 to e }.

Then the path j’ in 8.5, can be chosen so that its distance from the

roots a1(x1) ceo ae(x1) stays > /“(11,t1)/2 and then the temperated grwoth

condition on ’Yr.can be derived using similar arguments as in [LZ]. A
notable point here, is that if the growth of the Nilsson class function @
is some number £3¢,i.e, if di‘st((x,t);zvs)g [§(x,t)| is locally bomded
- see [7Z,Definition 4.3.4,] for the precise meaning of the order of
growth of a Nilsson class function, then the order of growth of \#ﬁ is

Lfe' , where o' 1is a fixed number determined so that /u(x1,t1) >

i
Adist((x,t),ZaJS)g hold for all (x,t) in B , where A is some positive
constant. This can for example be used tc give an alternative proof of

Theorem 5.1.1» in [ 1 .
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8.5. The extension of local solutions

Recall that in Section 2 we have claimed that a global solution can be
continued to a multi-valued analytic function in B(Go,eo) - S when § < < e
and £, is sufficiently small. The extension to the complement of SUZ
is easily obtained using the proof of Theorem 8.4., but it is not obvious
why Z can be removed., In [11 this is proved on page 4-5-5 and here we shall
present an alternative proof, using our set-up.

So let @o be a global solution. This means that we can find positive

numbers 60 < € such that the following conditions hold:
(1) 7 a fixed point t, with Ito] < e, such that (x,t) is outside S =
= p—1(0) when |x| < 8,

(2) ?o(x,t) is holomorphic in some polydisc B(xo,tozﬁo,e) with € small

£ function
(3) p'(x,t)?o(x,t) + 5; K(x,t,u)?o(x,u)du extends to a holomorphic)in

o
B(So,so)

A notation We put B* = B(6°,e°) - (SVZ) where Z is the loous of the
discriminant of p.

8.6, Remark Of course, the local solution Qo actually satisfies more
equations, i.e. R 9~ extend to B(&o,eo) for all v. However, to prove that
9 extends to B(6°,e°) - S it suffices to use the equation (3), where the
reader may observe that use of the other equations already has been made
in the passage from semi-local to global solutions, which implies that ?o

can be assumed to satisfy (2) from the start.

Proof of the extension to B(&o,eo) - S . We are going to use the

o-tuple 9, ... %y from Section 6. These functions also satisfy (2) and
(3) above, and as we have already said (2) and (3) and the method used to
prove Theorem 8.4, implies that ¢0,W1 eee ?,y all extend to B® and it
remains to get rid of Z.

To prove this we shall first study the actual continuaticn inside B*. So

let y %be a path in B* where J (o) = (xo,to) and Y (1) = (x4t Then

! L]
1

we find that the germ (QO)X at (x1,t1)- arising by the analytic continu-
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-ation along J satisfies

t
Formula . 1. Pw(?o)l (x9t) + St K(x,t,u) (‘PO)J (xou)du + \P(xot)

T

b

holds in U , where V(x,t) =S K(x,t,u)? (x,u)du and the
(x1,t1) N o

L7
integration takes place along a paté*ﬁrom to to t, which stays outside the

.1

roots aj(x1), as explained in the proof of Theorem 8.4.

’n /‘c inte w&f
A r—
Since V/Cx,t) is defined with to and t1 as fixed end-pointsb and since

the kernel K(x,t,u) is holomorphic from start, it follows that \y(x,t)
is holomorphic in a pelydisc |x-x1] <6 and |[t| < e, already, i.e.

the freezed functions t — ¥ (x,t) belong to the Banach space A(D) for all

Y.

lx-x | < 6, where 6 is small and D = {t : ltl < €
1 -0

Using Formula 1 and the material from Seotion 6.12-13, we then find

Formula 2. _7 unique germs c1(x) ces cy,(x) in Ox and a function
1

H(x,t) which is holomorphic when [t| < 5, and lx-x1| < &, such that
(95)y (xs%) = 0y (2)(P)g (xs8) + e + o (x)(?))g (x,s8) + Hlx,t)

holds in C%, , where (?j)? are the local branches which arise by

x1,t1)

analytic continuation of 9, which is performed as in Section 6.12. That is,

J
first ?j(x,t) is holomorphic in a polydisc Ix| < 5, and lt-tol < g - see
6+.9. Remark- and staying there we consider the germ of ?j at (x1,to) which

A~ A
then is continued along the path £ with §(s) = (x,, §(s)) and where

8-*5(8) moves in the punctured t-disc from to to t1- avoiding the roots

ay(x,). Here § Ao He same ok wed b define

Proof continued Of course, in Formula 2, the ;crms Cy o+ Cuw in Czc
1

and the function H(x,t) both depend on the path } .
If we write y(s) = (J&(s), )t(s)), then ¢, +.o cyy; are continued

analytically along the path s—*)}‘s) from X to x, . However, this

;
analytic continuation is trivial, because from the start, the given zerm

9, at (xo,to) already satisfies (2)- so that
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vo(x,t) = C4(x)9(x9t) + o0 + Cuy(x)9(x,t) + Hy(x,t) holds in 0‘@9"0)

where C, already are holomorphic in x| < 60. In other words, c

J

are simply analytic extensions of given holomorphic functions in |x| < 60.

1 LN 2 cw

So cj = Cj holds all the time., In the same way, the germ H(x,t) arises

by analytic continuation of Ho sy 80 it is holomorphic everywhere too.

Summing up, we have achieved
Sublanns 3 (7,)y (x58) = Co(X)(9)p (x,) + cuv + Cuolmyt) (9 )p(x,8) +

+ H(x,t) hold, where C, e+s Cyy and H are holomorphic in B(&o,so).

At this stage the continuation to B(&o,eo) - S is evident, because

of %
Sublemma 3 asserts that the analytic continuation a/long any path y in B*
is achieved by analytic continuations of 91 see 9,, along the simpler

paths ¢ which arise from ) in view of the Homotopy Lemma 8.,5. So at

this stage the continuation to B(ao,so) - S follows from the observation
already made in Section 6, namely that the freezed functions t —> ?j(x1,t)

extend giomg any path £ from to inside the punctured disc where

?ﬁr?
t ;( aj(x,‘), and /this is true even if multiple zeros occur,
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