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XV.1

METHODES NUMERIQUES POUR LES EQUATIONS DE

NAVIER-STOKES INSTATIONNAIRES DES FLUIDES VISQUEUX INCOMPRESSIBLES

*

R. GLOWINSKI

On décrit dans ce travail une méthode de résolution des équations de

Navier-Stokes pour les fluides visqueux incompressibles lorsque l’écoulement

est instationnaire. Cette méthode est basée sur une discrétisation par rapport

au temps de type directions alternées, ce qui permet de découpler les difficul-

tées numériques , liées à l’incompressibilité, et aux non linéarités, respec-

tivement. On décrit également des algorithmes de résolution des problèmes décou-

plés ainsi obtenus ainsi qu’une méthode d’approximation par éléments finis mixtes.

Des résultats numériques illustrent les possibilités des méthodes décrites dans

cet article.

* Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie,
Place Jussieu, Tour 55.65, 75230 Paris cedex 05, France and INRIA
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NUMERICAL METHODS FOR THE TIME DEPENDENT

NAVIER-STOKES EQUATIONS FOR INCOMPRESSIBLE VISCOUS

FLUIDS

R. GLOWINSKI*

INTRODUCTION.

We describe in this paper some new methods for solving the time dependent
Navier-Stokes equations for incompressible viscous fluids ; these methods

combine finite elements for the space discretization and alternating direc-
tions for the time discretization. The key idea is to use the s littin

associated to the alternating direction methods to decouple the two main

difficulties of the original problem, namely nonlinearity and incompressi-

bilit .
The methods which follow are a natural extension of those described

in [11,[21, since least square and conjugate gradient methods are still
used to treat the nonlinearity ; however due to the decoupling mentioned

above the present methods are in fact more efficient since they require less

computer time and lead to more accurate numerical results. They provide in

particular quite efficient methods for solving the steady Navier-Stokes

equations.

The following paper is closely related to GLOWINSKI [3 , Chapter 7J

for which we refer for more details and also for a substantial bibliography

concerning the Navier-Stokes equations and their numerical treatment.

* Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie,
Place Jussieu, Tour 55.65, 75230 Paris Cedex 05, France and INRIA
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1. - FORMtJLATION OF THE TIME DEPENDENT NAVIER-STOKES EQUATIONS FOR INCOM-

PRESSIBLE FLUIDS.

Let us consider a newtonian incompressible viscous fluid. If Q and

r denote the region of the flow N=2,3 in practice) and its boundary,

respectively, then this flow is governed by the following Navier-Stokes equa-
tions

(2) V-u = 0 (incoLnpressibility-condition).

In (1),(2)

(b) u= is the flow veloc &#x3E;
- i i 1

(c) p is the pressure,

(d) v is the viscosity of the fluid,

(e) f is a density of external forces.

In (1), (u*V)u is a symbolic notation for the nonlinear (vector) term

Boundary conditions have to be added ; for example in the case of the airfoil

B of Figure 1, we have (since the fluid is viscous) the following adherence

condition

typical conditions at infinity are

where u is a constant vector (with regard to the space variables at least).
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t

Figure 1

If Q is a bounded region of RN we may prescribe as boundary condition

where (from the incompressibility of the fluid) the iven function g has

to satisfy

where n is the outward unit vector normal at F.
’" 

rr

Finally for the time dependent problem (1),(2) an initial condition

such as

with u given, is usually prescribed.
From the above equations we observe three difficulties (even for flows

at low Reynold’s numbers in bounded regions Q) which are

(i) The nonlinear term (u-V)u in (1),

(ii) The incompressibility condition (2),

(iii) The fact that the solutions of the Navier-Stokes equations are

vector-valued functions of x,t, whose components are coupled by

the nonlinear term (u-V)u and by the incompressibility condition

V.u = 0. 
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Using convenient alternating direction methods for the time discreti-

zation of the Navier-Stokes equations we shall be able to découplé the diffi-
culties due to the nonlinearity and to the incompressibility, respectively.

For simplicity we suppose from now on that Q is bounded and that we

have (5) as boundary condition (with g satisfying (6) and possibly depending

upon t).

2. - T IME DISCRETIZATION BY ALTERNATING DIRECTION METHODS.

Let ~t (&#x3E; 0) be a time discretization step and 6 a parameter such that

0 6  1 .

2.1. A first alternating direction method.w ..am r n r ..r r

We consider first the following alternating direction method (of Peaceman-

Rachford type) :

respectively.

We use the notation fj(x) = f(x,jt), gj(x) = g(x,jt), and uj(x) is an

approximation of u(x,j~t).
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2.2. A second alternating direction method.

We consider now the following alternating direction method (of Strang

type) : t

then for n ~ 0 and starting from u we solve

2.3 Some comments and remarks con,cerning the alternating direction schemes

(8)-(10) and ( 11 )-( 14) .

Using the two alternating direction schemes described in Secs. 2.1, 2.2

we have been able to decouple nonlinearity and incompressibility in the Navier-

Stokes equations (1),(2). We shall describe in the following sections the spe-
cific treatment of the subproblems encountered at each step of (8)-(10) and

(11)-(14) ; we shall consider first the case where the subproblems are still

continuous in space (since the formalism of the continuous problems is much
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simpler), and then the discrete case where a finite element method is used to

approximate in space the Navier-Stokes equations.
Scheme (8)-(10) has a truncation error in 0(dt) ; due to the symmetriza-

tion process involved in it, scheme (11)-(14) has a truncation error in 
- 

We observe that un+1/2 and us+1/4, , un+1 are obtained from the solution
’"’v ’" "V

of linear problems ((9) and (12),(14), respectively) very close to the steady

Stokes problem. Despite of its greater complexity scheme (Il)-(14) is almost

as economical to use as scheme (8)-(10) ; this is mainly due to the fact that

the "quasi" steady Stokes problems (9) and (12),(14) (in fact convenient finite

element approximations of them) can be solved by quite efficient solvers result-

ing in that most of the computer time used to solve a full alternating direction

step ((9),(10) or (12)-(14)) is in fact used to solve the nonlinear subproblem

((10) or (13)).

The good choice for 6 is 6 = 1/2 (resp. e = 1/3) if one uses scheme

(8)-(10) (resp. (11)-(14)) ; this follows from the fact that with the above

choices for 6, many computer subprograms can be used for both the linear and

nonlinear subproblems, resulting therefore in quite substantial computer core

memory savings.

Remark 2.1 : A variant of scheme (8)-(10) is the following (it corresponds

to 6=1) : ·

then for n &#x3E; 0 and starting from u n
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where

Both subproblems (16) and (17) are linear ; the first one is also a

"quasi" steady Stokes problem and the second which is a first order system

can be solved by a method of characteristics.

A similar remark holds for scheme (11)-(14).

Such methods have been used by several authors, the space discretization

being done by finite element methods very close to those described in Sec. 5

of this paper (see [ 4],[ 5] for a discussion of those characteristics - finite

element methods for solving Navier-Stokes equations). In our opinion these

characteristics-finite element methods are still too dissipative and will not

be discussed here any longer (we are presently working at such schemes with

very small dissipation).

3. - LEAST SQUARE-CONJUGATE GRADIENT SOLUTION OF THE NONLINEAR SUBPROBLEMS.

3.1. Classical and Variational Formulations. Synopsis.
At each full step of the alternating direction methods (8)-(10) and

(11)-(14) we have to solve a nonlinear elliptic system of the following
type

where oc and v are two positive parameters and where f and g are two iven
functions defined on Q and F, respectively.

We shall not discuss here the existence and uniqueness of solutions

for problem (18).

We introduce now the following functional space of Sobolev’s type

(see, e.g., ADAMS [6], NECAS [7], ODEN-REDDY [8] for information on Sobolev

spaces) :
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if g is sufficiently smooth then V is nonempty.
~ 9

We shall use in the sequel the following notation

Using Green’s formula we can prove that for sufficiently smooth functions u

and v, belonging to and V , respectively, we have 
-

~ 0

It can also be proved that if ue V 
g 

is a solution of (18) it is also a solution
g

of the nonlinear variational problem

and conversely.

We observe that (18),(24) is not equivalent to a problem of the Calculus

of Variations since there is no functional of v with (v-V)v as differential ;

however using a convenient least square formulation we shall be able to solve

(18),(24) by efficient methods from Nonlinear Programing, like conjugate gra-

dient, for example.



XV.10

The finite element approximation of problem (18),(24) will be discussed

in Sec. 5.

3.2. Least square formulation of ( 18) , (24) .

Let v E V ; from v we define y (= y(v)) eV as the solution of
N g -.., N ’v V o

We observe that y is obtained from y via the solution of N uncoupled linear

Poisson problems (one for each component of y) ; using (23) it can be shown

that problem (25) is actually equivalent to the linear variational problem

which has a unique solution.

Suppose now that v is a solution of the nonlinear problem (18),(24) ;

the corresponding y (obtained through the solution of (25),(26)) is clearly

y = 0. From these observations it is quite natural to introduce the following

(nonlinear) least square formulation of problem (18),(24) :

where J : (Hl 1(~2»N +R is that function of v defined by

with y defined from v by solving the linear problem (25),(26).
’"
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We observe that if u is solution of (18),(24) it is also a solution

of (27) such that J(u) = 0 ; conversely if u is a solution of (27) such
- -

that J(u) = 0 it is also a solution of (18),(24).

3.3. Conjugate gradient solution of the least square problem (27).
3.3.1. Description of the algorithm.

We use the Polak-Ribière version (see POLAK [9]) of the conjugate

gradient method to solve the minimization problem (27) ; we have then

(with J’(v) the differential of J at v)
- -

Step 0 : Initialization

respectively.

Then for n &#x3E;_ 0, assuming that un,gn,wn are known we obtain 
1

N V N N N N

by

Step 1 : Descent



XV.12

Step 2 : Calculation of the new descent direction.

As we shall see in Secs. 3.3.2, 3.3.3, applying algorithm (29)-(36) to

solve the least square problem (27) requires the solution at each iteration

of several Dirichlet problems associated to the elliptic operator aI-va.

3.3.2. Calculation of J’.

A most important step, when making use of algorithm (29)-(36) to solve

the least square problem (27), is the calculation of at each

iteration ; owing to the importance of this calculation we shall give it in

detail.

Let vE V and let âv be a perturbation of v such that ôvE V 
0 

(i.e. 6v=O
w 1I 201320132013201320132013201320132013 - o --

on F) ; we have for the corresponding variation of J(v)

Using (26),(28) we also have that

where 6y is the solution of the linear problem
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Taking z=y in (39)we obtain from (37),(38) that

Thus J’(v) can be identified with the linear functional from V toR defined by
- o

it has therefore a purely_,inte&#x26;ral representation, which is of major importance
in view of finite element implementationsof algorithm (29)-(36).

From the above results, to obtain J’(u )z&#x3E; we proceed as follows :

(i) We compute yn+l 1 from un+l 1 through the solution f (25) with v 
= 1 We compute y from u through thé solution of 5 with v = u ’

i.e. we solve the Dirichlet system

(ii) We finally obtain J’(u n+l ),z&#x3E; by taking in (40) v = and y = yn+l.
N N N N 1r N

3.3.3. Further comments on algorithm (29)-(36).

Each step of algorithm (29)-(36) requires the solution of several Dirichlet

systems for the operator more precisely we have to solve the following

such systems :
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(i) System (41) to obtain yn+l fromu ,
.... // .. -n+l "n+1 n+1
(ii) System (34) to obta*in g 1

V y N

(iii) Two systems to obtain the coefficients of the quartic polynomial

Thus we have to solve 4 Dirichlet systems for aI-v6 at each iteration (or

equivalently 4N scalar Dirichlet problems for vI-V6 at each iteration).

From the above observations it appears clearly that the practical imple-
mentation of algorithm (29)-(36) will require an efficient (direct or iterative)

elliptic solver.

The solution of the one-dimensional problem (32) can be done very effi-

ciently since it is equivalent to finding the roots of a single variable

cubic polynomial whose coefficients are known.

As a last comment we would like to mention that algorithm (29)-(36) (in

fact its finite element variants) is quite efficient ; when used in combination

with the alternating direction methods of Sec. 2 to solve the test problems

of Sec. 6, three iterations suffice to reduce the value of the cost function
4 6

J by a factor of 104 to 106.

4. - SOLUTION OF THE "QUASI" STOKES LINEAR SUBPROBLEMS.

4.1. Formulation. Synopsis.
At each full step of the alternating direction methods (8)-(10) and (11)-

(14) we have to solve a linear problem of the following type

where a and v are two positive parameters and where f and g are two given

functions defined on H and F, respectively.

We recall that if f and g are sufficiently smooth, then problem (42) has

a uni _que solution in R) ) ( with V g still def ined by (2 2) ; · 

means that p is defined only to within an arbitrary constant).

We shall discuss in Secs. 4.2, 4.3 several iterative methods for solving (42),

quite easy to implement using finite element methods (other methods are discussed

in C 3, Chap. 7 ]) .
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+.2. Gradient and conjugate. gradient methods for solving (42).

This method which is quite classical is defined as follows :

Concerning the convergence of algorithm (43)-(45) we have the following

Proposition 4.1 : Suppose ,. that

we have then

where is that solution of (42) such that
o

Proof : We shall only prove the convergence of {~n} ; for a proof of the

convergence of &#x3E;0 (which is more complicated) see, e.g., [3, Chap. 71.

Let ~u,p} be a solution of (42) ; we clearly have

We define then un,pn pn-P. respectively ; by substraction
’V N V 1I

between (44) and (42) (resp. (49) and (45)) we obtain
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Using the notation Iqlo = Ilqll L 2 (~) , we obtain from (51) that

on the other hand multiplying(50) by u~ and integrating by parts we obtain

Combining (52) and (53) we finally have

Let v E (H~ 1 (~2»N ; we have

which implies

We also have

Combining (55),(56) we clearly obtain
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It follows then from (54),(57) that

Suppose that (46) holds (i . e. 0  p  2 2013) ; it follows then f rom (58) that

the sequence decreasing ; since it is bounded from below by 0
o nz

it converges, implying

Since (46) implies p(2-p )&#x3E;0 we have from (58) , (59) that
V

Since un-U, we have thus proved that
N V N

Remark 4.1 : It can be proved (see [3, Chap. 7]) that converges

to linearl (i.e. the séquences {j)u -u!) 
converges to zero as fast, at least, as a geometric sequence).

Remark 4.2 : When using algorithm (43)-(45) to solve the "quasi" Stokes problem

(42), we have to solve at each iteration N uncou led scalar Dirichlet problems

for aI-vA, to obtain un from pn. We see again (as in Sec. 3.3.3) the importance

to have efficient Dirichlet solvers for aI-vA.

Remark’4.3 : Algorithm (43)-(45) is related to the so-called method of artifi-

cial compressibility of Chorin-Yanenko ; indeed we can view (45), (49) as

obtained bya time discretization process from t-he equation

(p being the size of the time discretization step).
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Remark 4.4 : In practice we should use instead of algorithm (43)-(45) the fol-

lowing conjugate gradient variant of it, whose convergence is much faster in

most cases, and which is, in addition, no more costly to implement :

Description of the conjugate gradient algorithm :

: Initialization

(60) p0 E: L (Q), ~ g iven arbitrarily,

solve then

#V #V

and set

~ 

Then for n2~0, we obtain g n+1 , w from p n ,g n ,w n by

Step 1 : Descent

Compute f irst y c(H 1(»N as the solution of
- 0

then

and f inal ly
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Calculation of the new direction of descent

Do then n=n+1 and o tô (64).

Once the convergence of (60)-(69) to po (that pressure solution such that

Jo p dx dx) has been obtained, we compute u from p by the solution of
G o - o

the Dirichlet system

4.3. Another iterative method for (42).

This second method is in fact a generalization of algorithm (43)-(45),

defined as follows (with r a ositive parameter) :

then f or n~ 0 de f ine un and 1 f rom pn b

Concerning the convergence of algorithm (70)-(72) we have the following

Proposition 4.2 : Suppose that

then the convergence result (47) still holds for 
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The proof of Proposition 4.2 is quite similar to that of Proposition

4.1 ; moreover the convergence of also linear (as shown in
- 

2013201320132013’2013

[ 3 , Chap. 7 ] ) .

Remark 4.5 (About the choice of p and r) : In practice we should use p=r,

since it can be proved that in that case the convergence ratio of algorithm

(70)-(72) is O(), for large values of r. In many applications, taking r=lo4r

we have a practical convergence of algorithm (70)-(72) in 3 to 4 iterations.

There is however a practical upper bound for r ; this follows from the fact

that for too large values of r, problem (71) will be ill-conditioned and

its practical solution sensitive to round off errors.

Remark 4.6 : Problem (71) is more complicated to solve in practice than

problem (44), since the components of un are coupled by the linear term

V(V.un) . Actually the partial differential elliptic operator in the left
N N V

hand side of (71) is very close to the linear elasticity operator, and close

variants of it occur naturally in compressible and/or turbulent viscous flow

problems.

Remark 4.7 : Other techniques for solving the "quasi" Stokes problem (42) are

discussed in references [ 1 ] ,[ 2J ,[ 3J. ::..
{

5. - FINITE ELEMENT APPROXIMATION OF THE TIME DEPENDENT NAVIER-STOKES EQUATIONS.

5.1. Generalities. Synop ..

We shall describe in this section a specific finite element approximation
fo the time dependent Navier-Stokes equations. Actually this method which leads

to continuous approximations for both pressure and velocity is fairlysimple and

has been known for years; it has been advocated for example by HOOD-TAYLOR [ 1 OJ,

among other people. Other finite element approximations of the incompressible
Navier-Stokes equations can be found in [1],[2],[3], and also in GIRAULT-

RAVIART [11] and TEMAM [12] (see also the references therein).

5.2. Basic hypotheses. Fundamental discrete spaces.
, .. 

0
We suppose that n is a bounded polygonal domain of R2. With a standard

finite element triangulation of ~, and h the maximal length of the edges of

the triangles of, we introduce the following discrete spaces (with Pk -
space of the polynomials in two variables of degree 5k)
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A useful variant of Vh (and Voh) is obtained as follows

a

where, in (77) ’ tÎ h is that triangulation of Q obtained from ’r. h by joining the
midpoints of the edges of TE t:h as indicated on Figure 2.

A

Figure 2

We have the same global number of unknowns if we use Vh defined by
either (75) or (77) ; however the matrices encountered in the second case

are more compact.

As usual the functions of ~ will be defined from the values they take
at the vertices of ; in the same fashion the functions of V h will be defined
by the values they take at the vertices oflch (resp. the vertices and the mid-

points of C if Vh is defined by (77) (resp. (75)).

5.3. Approximation of the boundary conditions.

Suppose that the boundary conditions are still defined by

for simplicity we suppose that g is continuous over r. We define now the space

yVh a s

i.e. yVh is the space of the traces on F of those functions vh belonging to Vh.
Actually if Vh is defined by (75) (resp. (77)), Vh is also the space of

, 

those functions defined over P, taking their values in R2, continuous over r
-

and piecewise quadratic (resp. linear) over the edges of C (resp. 0 contained
in F.
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Our problem is to construct an approximation gh of g such that

If7T,g is the unique element of YVh obtained from the values taken by g at
those nodes off, belonging to r, we usually have

To overcome the above difficulty we may proceed as follows :

(i) We define an approximation nh of n as the solution of the following linear

variational problem inyV.

problem (81) is in fact equivalent to a linear system whose matrix is sparse,

symmetric, positive definite, and quite easy to compute.

(ii) Define then gh by

It is quite easy to check that (81),(82) imply (80).

5.4. Space discretization of the time dependent Navier-Stokes equations.

Using spaces , V and V we approximate the time dependent Navier-%’ h oh

Stokes equations as follows :
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in (83)-(86), fh and uoh are convenient approximations of f and u , respectively,
- n -o -  o

and gh has been defined in Sec. 5.3.

We have thus reduced to solution of the time dependent Navier-Stokes

equations to that of a nonlinear system of algebraic and ordinary differential

équations.
We observe that the incompressibility condition is approximately satisfied

only. The time discretization of system (83)-(86) is discussed in the following
Sec. 5.5.

5.5. Time discretization of (83)-(86) by alternating direction methods.
We consider now a fully discrete version of the scheme (8)-(10) discussed

in Sec. 2.1 ; it is defined as follows (with ~t and 6 as in Sec. 2) :

and then
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Obtaining the fully discrete analogue of the scheme (11)-(14) described in

Sec. 2.2 is left as an exercise to the reader.

5.6. Some brief comments on the solution of the linear and nonlinear

discrete subproblems.
The linear and nonlinear subproblems which have to be solved at

each full step of scheme (87)-(92) are the discrete analogues (in space)

of those continuous subproblems whose solution has been discussed in Secs.

3 and 4 ; actually the methods described in these sections apply with

almost no modification to the solution of problems (88)-(90) and (91),

(92). For this reason they will not be discussed here (they are however

discussed in details in [3, Chap. 7]).

6. - NUMERICAL EXPERIMENTS.

We illustrate the numerical techniques described in the previous
sections by presenting the results of numerical experiments where these

techniques have been used to simulate several flows modelled by the Navier-

Stokes equations for incompressible viscous fluids.

6.1. Flow in a channel with a step.
v r n r . n r

The first numerical experiment that we have done concerns a Navier-

Stokes flow in a channel with a step, at Re = 191 ; the characteristic length
used to compute the Reynold’s number is the height of the step. Poiseuille

profiles of velocity have been prescribed upstream and quite far downstream.

The alternating direction schemes of Sec. 5.5 have been used to

integrate the time dependent Navier-Stokes equations until a steady state

has been reached. The corresponding stream-lines are shown on Figure 3.

We clearly see on Figure 3 a thin separation-1 starting slightly
below the upper corner of the step, and separating a recirculation zone from

a zone where the flow is quasi-potential.
The results obtained for this test are in very good agreement with

those obtained by several authors, using different methods (see in particular

and HUTTON [ 13 ] ) .
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6.2. Flow around and inside a nozzle.

This experiment concerns an unsteady flow around and inside a nozzle at

high incidence, at Re = 100 (the characteristic length being the distance

between the nozzle walls).

The velocity distribution has been visualized on Figure 4, showing

clearly the creation and the motion of eddies inside and behind the nozzle.

7. - CONCLUSION.

The methods discussed in this paper combine a time discretization by

alternating direction schemes and a space approximation by finite elements.

Compared to the methods discussed in [Il they produce more accurate results

for less computational efforts. The main cause of that improvement is the

decoupling between nonlinearity and incompressibility obtained through the

application of alternating direction schemes.

We are still looking at further improvements and we have the feeling

that methods making use of characteristic methods have a good future in

order to simulate viscous flows governed by the incompressible or compres-

sible Navier-Stokes equations.
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