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§1. STATEMENT OF RESULTS

Let G be a domain in JR n with a smooth boundary ’y and let A(x, ~) be

a second order differential operator in the cylinder Q = 

strictly hyperbolic with respect to x , where :
- 1 0-

Consider the following mixed problem

where h E §b’ ( r ) , h = 0 for x  0, u E and B (x, ~ ) is a differential operator
o

of order r. We shall find when for a given B (x, ~ ) the problem ( 1.1 ) , ( 1. 2) , ( 1. 3 ) is

well-posed or ill-posed. Denote by r x [O, 6 ) the 6-neighbourhood of r in G.

We shall use in G the coordinates (x’ ,x ), where x’ E r and x is the distance
6 n ~ n

to r , x E [0, ê). · The dual coordinates in T (G ~ ) will be denote by ( I ’ , I )

where ’ lET ( r ) and ç: n E JR . 
" 

n

The principal symbol of has in this system of coordinates the

following form

Set

where (x’ , x , ) is the principal symbol of the operator writtenn n p p p ( ,  ) written
in the system of coordinate introduced above, C’ = (t, 0 + iT , 

is the branch of the square root such that

i n -....-
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It is known (see [121 ) that the condition .

is necessary fcr the M ell-posedness of the initial-boundary problem ( 1.1 ) , (1.2),

(1.3).

We shall see below that one needs additional assumpticns on b(x~, C’) for

real l;’ = ~’ . It is well-known (see, for example, [ 13 ] ) that, microlocally o,n

N+UN- the problem (1.2), (1.3) can be reduced to the solution of a pseudo-

differential equation .

I

where u = o ’1

We shall assume that b (x’ , ’ ) is an operator of principale type in N + UN_ ;

more exactly we assume that

Therefore b(x’, 11’) has the following form ,in the neighbourhood o E

where b 
(1 ) 

(x’ , 1;’) -:I 0. The main problem is to find the conditions on b (x’ , ~ ’ ) for

We shall assume additionally that

/"to n ,

Then in a small neighbourhood of such point (x, ~ ) E No we have

where B (2) (x’ , 7 1 0. Therefore in this neighbourhood we have’
n
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where

The conditions of the well-posedness of the initial-boundary problem depend on

the geometry of the boundary. We shall consider only the cases when the boundary

is strictly convex or concave with respect to the null-bicharacteristics of A(x, ~).
The boundary r is called strictly convex for (x’, ~’) E N if for x - 0 and

have (cf. [3] ) :

where f - , y) is the Poisson bracket.
n

The boundary r is called strictly concave for (x’ , ’ ) E No if (1.14)

with the opposite sign holds.

In the case of the strictly concave boundary there are few restrictions

for the well-posedness of the initial-boundary problem.

Theorem 1.1 : Let the boundary r be strictly concave for all (x’, ~’) and let

the assumptions ( 1. 6 ) , ( 1. 8 ) and ( 1.10) hold . Then for each h E HT ( r ) there

T 
s+r-1

exists a unique solution u E H T (r2) of the problem ( 1.1 ~ , ( 1. 2 ) ( 1. 3 ) when T
s

is sufficiently large.

Here HT (Q ) is a Sobolev’s space with a finite norm
s

is a pseudo-differential operator with

u

boundary we shall consider separately three cases.

a conic neighbourhood U of (~,~) and a constant C such that
o 0

for any (
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Theorem 1.2 : -. Let the boundary r be strictly convex and the conditions (1.6), (1.8)
,A A 

- 

tha (A’ A = 0 the( 1.10) be satisfied. Suppose that for any (x, ) E N such that b(x, ) = 0 the
condition ( 1.15) hol,ds. Then for each h E H s+r-1 (r ) T there exists a unique 

.

solution u E H ( Q ) of the problem ( 1.1 ) , ( 1. 2 ) , ( 1. 3 ) where T &#x3E; 0 is suf f iciently
- s T

is a Sobolev’s space on

Remark 1.1 : If 0 then the condition (1.15) means 1) ~: 0 in

when p = 0 since the symbol A (0) (x,~ ) is hyperbolic with respect

Now we shall consider the case-when the condition (1.15) is not satisfied.

n +
We suppose that there exists a point (x, ’4 E ) E N 

0 
with the followingPP p ( r  ) 

o 
g

properties : .

and there is a sequence

We assume also that

and

where 6 is an arbitrary positive constant and C, ’ 6 I are independent on m . "

, 

. n
Theorem 1. 3 : Suppose that there exists (X,l’) E N0 such that (1.16), (1.17)
(1.18) hold and that the boundary r is strictly convex at the point A A ’

Then the initial-boundary problem (1..1) (1.2) (1.3) is ill-posed in the space
of distributions. More precisely, there exists h(x’) ~ h(x’) = 0 for- ~ .- - ~~__.. 

~~--~~-~~,~~~~---=~~-~- 0 ~
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x  0 such that there is no u(x) E ’ ( ) which is a solution of the problem
o T

(1.1) , (1.2) , (1.3) for xo  T. 
_

is the point satisfying (1.14),

is the space of distributions on T.

Remark 1.2 : It is obvious that (1.17) is satisfied, for example, when

Im ~,1 ( x’ , ~ ’ ) - 0. We note that (1.18) implies

One can show that when 1m À1 (x’ , ~’) = 0 and ( 1.16) , (1.18’) hold then there

exists a sequence

Theorem 1.4 : Let the boundary r be strictly convex and the assumptions (1.6),
m 

( 1. 8) and ( 1.10) hold. Suppose that for each (x, ) E N o. such that b (x, ) = 0
and (1.15) is not satisfied we have

Then for each h E Hs+r-1+m (rT), h=0for x 0  0, there exists a unique solution

u E of the problem ( 1.1 ) , ( 1. 2 ) , ( 1. 3 ) where T is suf f iciently small and

/B % ^
where the maximum in (1.20) is taken over all (x, ) E N 

o 
such that b (x, ) - 0 

"

0

and (1.15) is not satisfied .

Remark 1.3 : Part of the results containing in the Theorems 1.1 and 1.3 was

proved by M. Ikawa (see [7] , [8] , [9] ). The Theorem 1.2 has an intersection

with results’ of M. Miyatake [11] , L. Ggrding [5] and R. Melrose and J. Sj5strand

[10] .

Remark 1.4 : We have described also the singularities of the solution of the

problem (1.1), (1.2), (1.3) under the assumptions of the Theorems 1.1 and 1.4

and additional assumptions that b1 (x’ , ~ ") and b2 (x’ , ~ ’ ) are real ( see ( 1. 9) and

(1.11)~.
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Remark 1.5 : Roughly speaking the phenomen of ill-posedness of the problem (1.1)

(1.2), (1.3) under the assumptions of the Theorem 1.3 can be explainec. in a

following way :

When (1.16) holds antl h ( }:’, ’ ) is real there is a propagation of singularities1 
, o

along the boundary (the bouodary waves) . These singularities are overgoing multiple

reflections the number of which tends to the infinity for any time interval ccn-
A 1B A

taining x 
0 

when the reflectLng points approach (x, ) . Therefore under the assump-

tions of the Theorem 1.3 the Green function of the problem ( 1.1 ) , ( 1. 2 ) , (1.3) has

a singularity of an infinite order, i.e. it is not a distribution. Indeed it can 

be shown for the model.initial boundary problem (see the section 3) that under the

assumptions of the Theorem 1.3 the problem (1.1), (1.~), (1.3) is well-posed in the
C)o

space of ultra-distributions, i.e. functionals over C -functions belonging to some

Gevrey’ classes. More precisely such ultradistri.butions have a finite order of

singularities outside of N 
0 

which increases when we approach N 0 and which becomes
infinite only on N .

o

It follows from the Theorem 1.4 that when (1.18’) don’t take place there

is still a well-posedness of the problem (1.1), (1.2), (1.3). We not,i that

when ~~ , ~t 1 } -~ 0 then (see (1.20)) in accordance with the Theorem 1.3.

§2. EXAMPLES 
.

’ 

We give now two simple examples which illustrate the Theoiems 1.1, 1.2,

1.3, 1.4.

Let. G be it strictly convex bounded domain in IR 2 and A(x, ~ ) = 0 =

is the wave operator. Consider the following initial boundary

problem

the normal derivative to 3G and a x is a real COO - function.9h 
-- ’ 

0
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The condition (1.6) gives

If a(x ) &#x3E; 0 then all assumptions of the Theorem 1.2 are satisfied.
o

If all zeros of a(x ) are of the first order and (2.4) holds then according to
o

the Theorem 1.4 the problem (2.1), (2.2), (2.3) is well-posed.

If x 
(o) 

is a zero of a(x ) and a’ (x ) such that there exists a sequence 
o o o 0

where a (x(n) ) )  0 and x (n) ~ x (°) then it follows from the Theorem 1.3 that the
0 0 0

problem (2.1 ) , (2.2) , (2.3) is ill-posed.

We note that if Q = (-00 ,+(0) x IG where CG is the exterior of the
domain G then according to the Theorem 1.1 the problem (2.1), (2.2), (2.3) is

well-posed under the only assumption (2.4).

Example 2.2 : Let G be the same domain as in the example 2.1. Consider the

following boundary operator

where a is the normal derivative to 3G, a is the tangential derivative andDn 
~ 

3s
b(s) is a real C -function.

It follows from the Theorem 1.4 that the problem (2.1), (2.2), (2.5)

is well-posed if b(s) has no roots on 3G of the multiplicity greater than one .

If there is a point s such that b(s ) = b’(s ) =0 and b (s) 0 then the
0 0 0

Theorem 1.3 gives that the problem (2.1), (2.2), (2.5) is ill-posed.

The exterior problem (2.1), ( 2 . 2 ) (2.5) in the domain Q = (-00 ,+°J ) x CG
is well-posed for any real b(s) E C (see the Theorem 1.1) and [7] ).

§3. A MODEL FOR THE THEOREM 1.3

To clarify the results of the section 1 we shall consider some model

equations with model boundary conditions. A good model for the initial-boundary

problem in the case of convex domain is the following problem in :
+ 

’
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where h(x’) is a tempered distribution, h = 0 for x n  0,

for ") is a homogonicus

The initial-boundary Dirichlet problem for the equation (3.1) ir, 

was considered in [4].

As it was stated in [4] the unique solution of (3.1) in the class of

tempered distributions which satisfies the initial data (3.2) and the Dir:.r.hlet

condition for x  0 is given by the following formula
o

where To &#x3E; 0 is arbitrary and A o (z) is the Airy function with the following proper-

ties

To solve the problem (3.1), (3.2), (3.3) it is enough to find v(x’) such that

where b 
T 

(~) is a pseudodifferential operator with a symbol
n

The necessary and sufficient condition for the existence of the solution v(x’) of

the equation (3.6) which is a tempered distribution in (-00 T) Y IR 
n-1 

for any

finite T is the following : there exist Ci. C2, c31 N such that
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for any T &#x3E; c2ln )’)+ C3 .
Suppose that there exists 1 such that Bl ( w") = 0 and000

suppose that there is a sequence , - 1 such that
m m

and

where N &#x3E; 0 is arbitrary,mN is depending on N.

Let K o be an arbitrary zero of the Airy function Ao(Z), i.e.

Take a sequence such that
m

We note that (3.10) implies Re - 
I

when m -~ 00.

For example, take It is easy to show that

there exists a root of the equation

which has the following asymptotic behaviour

Therefore we have

where
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.L..I.U

N is arbitrary, m&#x3E;m .
N

Since the condition (3.8) is not satisfied we obtain that the problem

(3.1), (3.2), (3.3) is ill-posed.

Remark 3.1 : : Solution of the problem (3.1), (3.2), (3.3) in the space of

ultradistributions.

We shall show that the solution of the ill-posed problem (~ .1 ) , (3.2) i

(3.3) exists in some class of ultradistributions. The general initial boundary

problems for hyperbolic equations in the spaces of ultradistributions was studied

by J. Chazarain [2] and R. Beals [1] , but their results are not precise. We

note that the Cauchy problem for partial differential equations with constant

coefficients in the spaces of ultradistributions was studied at first by G. E. Shilov

and his students (see [6]). Denote by T 0 (~’) the following function :

One can show assuming that the condition (1.6) holds that

belongs to the Gevrey class G3 - E of order

Let h(x o ,x") be an arbitrary tempered distribution, h = 0 for x 
o 
 0 . We define

vex’) by the following formula

where L is a curve z ( ) = + iT ( ) in the complex plane C such that
o o o

One can see that v(x’) is a ultradistribution belonging to G3-E and

is a solution of the equation (3.6) . We note that v(x) is a ultradistribu-

tion microlocally only . Let X be a pseudodifferential
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operator with a symbol

we have that 

belongs to a Sobolev’s space of the order

§4. A MODEL FOR THE THEOREM 1.4

In this section we consider the equation (3.1) in IR n+l with the initial
+

data (3.2) and with the following boundary condition

where h is a tempered distribution, h = 0 for X 0  0, A" is a pseudodifferential
0

operator with the symbol I C" I , a &#x3E; 0 and y # 0. We note that the condition (1.6)

gives that Re y.Imy  0.

As in §3 (see (3.6)) we reduce the solution of the problem (3.1), ( 3 . 2 ) ,

(4.1) to the solution of the following equation in :

and NT is the Neumann operator,

If we take the Fourier transform in (4.2) we obtain an ordinary differential

equation of the first order :

where
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The general solution of the homogeneous equation (4.4), i.e. with h = 0, is

given by the formula

_ 

1

where we take a branch of Z which is positive for the positive Z.

By using (4.6) one can show that the equation (4.4) has a unique solu-

tion i.hic°a is a tempered distribution and so that the problem ( 3 .1 ) , I ( 3 . 2 ) , I ( 4 .1 )

is well-posed. following indirect way to solve the equation (4.2) is more

useful : in region E 0  0 the symbol NT is a symbol of class S 1/3 ,0 and
so that there is no difficulties to solve the equation (4.:~) microlocally in this

00

region. LEat now (0 &#x3E; 0. Denote by x (t) a C -function such that X 1(t) = 1 for

t &#x3E; 1, x 1(t) = C) for t  0. Let X1 E I E" ’ 1-1/3) be a pseudodifferential opera-

tor with a symbol I ç"l -1/3 ). 
0

Let B X 1 be the following operator

where 1 and A(Z) is the Airy function

with the following asymptotic behaviour for Z - +00 (see, for example [4])

We note that A o (Z) = A(Z) - A1 (Z) .
The operator BX1 is a Fourier integral operator with the phase function

. It was indicated in [4] that the phase

function (p(X’~’) for § &#x3E;O is the generating function for the canonical transform

mation (y’’) - (:Kl,1) such that the image (Xg,£g) of a point (y’’)y &#x3E; 00 o n+1 ooo
is the endpoint of an outgoing bicharacteristics in 3R of the operator (3.1)

which starts at the point 
o 0

It is easy to verify that the following identity holds

where L 
0 

is a pseudodifferential operator with a symbol
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We note that an operator of the form Lo arises also when one consider
the case of the concave boundary. It is not difficult to prove the existence of

the inverse of L and therefore to find the inverse of (4.9).
o

It was shown in [4] that

One can obtain from (4.10) an a priori estimate for the solution of the equation

(4.2) with a loss of 1 1+ 2 derivatives. 
3 y 3

The identity (4.9) allows also to describe the wave front set of the

solution v (x’ ) . 

REFERENCES

[1] R. Beals : Mixed boundary value problems for non strict hyperbolic equations

Bull. AMS (1972) pp.520-521.

[2] J. Chazarain : Problèmes de Cauchy abstraits et application a quelques

problèmes mixtes, J. Funct. Analysis v.7 (1971), pp.386-446.

[3] G. Eskin : Parametrix and propagation of singularities for the interior

mixed hyperbolic problem, Journ. d’Analyse Math. v.32 (1977) pp.17-62.

[4] G. Eskin : Propagation of singularities for the interior mixed hyperbolic

problem, Sem. Goulaouic-Schwartz 1976-1977, exposé n° XII.

[5] L. Garding : Le problème de la dérivée oblique pour l’équation des ondes,

C. R. Acad. Sc. Paris t.285, 1977, pp.773-775, ET C. R. Acad. Sc. Paris

t.286 (1978 p.1199.

[6] I. M. Gelfand, G. E. Shilov : Generalized functions v.3, Fizmatgiz Moscow,

1958.

[7] M. Ikawa : Problèmes mixtes pour l’équation des ondes II, Pibl. R.I.M.S.

Kyoto Univ. v.13 n° 1 (1977), 61-106.

[8] M. Ikawa : On the mixed problems for the wave equation in an interior

domain, Comm. in P. D. E. 3(3), 249-295 (1978).

[9] M. Ikawa : Preprint (1979).

[10] R. Melrose, J. Sjostrand : Propagation of singularities near the boundary

II (in preparation).



TJ.14

[11] S. Miyataké : A sharp form of the existence theorem for hyperbolic mixed

problems of second order, J. Math. Kyoto Univ. 17 (2), 1977, p.199-223.

[12] K. Kajitani : A necessary condition for the well-posed hyperbolic mixed

problem with variable coefficients, J. Math. Kyoto University 14 (1974),

231-242.

[13] L. Nirenberg : Lectures on Linear P. D. E., Regional conference series in

Math., n° 17, Providence, R. I., 1973.


