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INTRODUCTION

We consider a direct Fourier integral method for analysing the

simplest type of hypoelliptic operator with double characteristic - where the

characteristic variety is a C °° symplectic manifold of codimension two. Of course,

the structure of these operators is well known (see for example [1]). However the

method discussed here, using the Hermite transform, also allows the direct solution

of some related problems.

In particular associated wave equations can be solved in a "quasi-

classical" manner, giving Poisson relations and optimal estimates on the Weyl

expansion for hypoelliptic operators, as well as propagation of singularities results

for microlocally hyperbollic operators of analogous type. Moreover, when the condi-

tion of hypoellipticity with loss of one derivative is violated, standard results

can be applied to an induced operator yielding more subtle conditions for hypoellipti-

city. A theorem of Weyl’s type for the non-zero eigenvalues of Kohn’s Laplacian on

a compact strictly pseudoconvex hypersurface in T2 can also be obtained.
Similar results on the propagation of singularities have been found

by B. Lascar [12] and for the invariant Laplacian on the Heisenberg group by z

A. Nachman. A non-homogeneous version of the Hermite transform (not therefore a

Fourier integral operator) has also been studied by Guillemin and Sternberg [5]

from a more group theoretic point of view.

§ 1. RESULTS

Recall that an odd dimensional submanifold of a symplectic manifold

on which the symplectic form has maximal rank carries a natural, "Hamilton", 1-

, 

’ 

00

foliation given by the radical of the symplectic form. If a C function p on a

symplectic manifold, E, vanishes to second order at a point p E E then the funda-

mental matrix of p at p is the linear map

where Hp is the Hamilton vector field of p.

Theorem 1 : Suppose that P is a classical pseudodifferential operator with real

principal symbol, p, on a manifold M. If
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00

is a C manifold of codimension 3 on which the symplectic form has maximal rank, the

Hessian of p has rank 3 and negativity 1 and any section of N*Z 2 with Hamilton field
non-zero and in the 1-foliation of ~’2 is in the negative cone of the dual of the

Hessian then the fundamental matrix has eigenvalues 0, ± i tr+ where tr+ E C 00 (L2) is

positive. Suppose in addition that

Then, any distribution u with Pu E COO has WF(u) fl Z 2 a complete union of integral
curves, maximally extended, of L2.

This theorem is proved by the application of Duhamel’s principle

after the construction of a microlocal parametrix for a suitable Cauchy problem

for P. In particular the result is valid microlocally.

Example : Suppose that

A is a classical pseudodifferential operator with non-negative principal

(2) ~ symbol, a , vanishing to precisely second order on a symplectic manifold,

~2, of codimension 2.

Then, provided A has order two the hypotheses of Theorem 1 are satisfied by

exactly when the analogue of (1) holds for A

Theorem 2 : Suppose that A is a classical pseudodifferential operator, acting on

2 - densities on a compact manifold M, that A is self-adjoint of order q &#x3E; 1 and

that ( 2 ) , (3) hold. Then, as an unbounded self-adjoint operator on L 2 (MI P. 1/2 ) A

has discrete spectrum :
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of polynomial growth. The Poisson distribution

converges in its singularities occur only at 0 and at the set, L , of signed

lengths of closed bicharacteristics of a away from ~2 : :

L is discrete and near 0 a is a Lagrangian distribution. There is a symbol 

vanishing in À  0 with 

---___ - .

1 3 m t - OJ as j - OJ , such thatwhere m. , m 1. -+ - as j - oo such that
J J

Remarks : a) The Poisson relation (5) is obtained by microlocal analysis of the

Cauchy problem for

(8) P’ =D - B
t

where B is an essentially positive qth-root of A, constructed operator theoretically.
Of course, P’ is therefore not a classical pseudodifferential operator, so Theorem 1

does not apply directly. However, the came approach via the Hermite transform allows

B to be constructed microlocally and Theorem 1 carries over unchanged. Note that (5)

cannot be deduced from Theorem 1, as was done in the elliptic case by Chazarain [3]

and Duistermaat and Guillemin [4] since the calculus of ( conic) wavefront

sets does not exclude the possibility that a is everywhere singular.

b) Since the double characteristics play no role in the singularities

of aCt) away from 0 the formulae obtained for the leading part of these singularities

by Duistermaat and Guillemin [4] , under suitable regularity and non-degeneracy

conditions on the closed bicharacteristics carry over immediately.
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c) The Weyl estimate (7) follows by direct application of ii8rni,--iTider’s

simple Tauber ian theorem [6] once it is shown ttiat (5 (t) is Lagranqirm it

with The exponents in (7) are a mixture of arithmetic 

There is the classical progression

and a double progression associated to the characteristic variety :

The logarithmic terms only occur if q is rational, q - 1 = a/b a1b E IN relatively

prime. Then

where n’ = n if 1 ~ q - 1 ~ n-1 is integral and n’ = n - b otherwise. In all cases

the m’ are amongst the mj in (9). The leading term in (7) was calculated by

Menikoff a.nd Sj6strand [101 using heat equation techniques. The existence of the

expansion (6) implies a similar expansion for the trace of the heat kernel.

Formulae for certain other coefficients can be obtained in some cases, notably in

the case q = n when the leading classical term, ao, , can be obtained as a requlari-
o

zation of the usual volume of Weyl.

d) The remainder estimate in (7) can be further improved hy the assumption

that the closed bicharacteristics have measure zero by following [4] using b).

e) When (3) is replaced by the known necessary and sufficient condition

for hypoellipticity with loss of one derivative

similar results hold. Without (3) A is not bounded from below, however (4), (3; ’,~ are

valid, although they only involve the positive eigenvalues. Defining analogous objects

for the negative eigenvalues
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the Poisson relation simplifies to

with 6 Lagrangian at 0 with classical symbol :

with exponents as in (9). The leading coefficient was found in [ 10] .

f) In the hypoelliptic case e) there are only finitely many finite

eigenvalues. If on the contrary (11) is identically violated on one or more

components ¿2J &#x3E; 
of 2 :

but still holds on the remaining components and A is of order two then the conclu-
A

sions of e) remain valid provided N , 6 are defined using only the eigenvalues* *

of appropriate sign outside a sufficiently large interval around 0. These results

apply in particular to Kohn’s Laplacian 0 b on functions on a strictly pseudo convex
compact hypersurface in ~2. .

Theorems 1 and 2 are proved by the same basic method. First the

operator concerned is reduced, microlocally, to normal form. Then the Hermite

transform discussed below is used to reduce the problem to one on the circle. This

must be analysed globally in S1 (but only microlocally in the other variables) and

this is readily done using product-type pseudodifferential and Fourier integral series

operators. As a byproduct of such analysis one obtains : (cf. [13], see also [14])

Theorem 3 : Suppose A is a classical pseudodifferential operator on a manifold

M and (2) holds near p E E 2* If (11) is false at p then there is a germ of canonical

transformation

and a pseudodifferential operator A m of order q-1, on lll 
n-1 

, such that near p
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(= 0 at p ) ) and A is hy.poelliptic at p if, and only if, A is hypoelliptic at p’.

The usual condition (11) corresponds to the ellipticity of Â~ .

C 2. HERMITE TRANSFORM

The first step in the proof of Theorems 1-3 is thf, reduction to an

operator associated to the homogeneous harmonic oscillator.

Proposition 1 : If A is of order q ~ 1 and satisfies (2) near p E ¿2 then there isI 

a germ of C -lnonical diffeomorphism

p’ = n= (0,0,...,0, n 1), n 1&#x3E; 0 in canonical coordinates (x,y; n-1 n-1
and associated Fourier integral operators of order zero

which are microlocal inverses at P :

such that

where S is an operator of order 1 with classical symbol.

This proposition represents, in this special case, an improvement over

the normal. form result of Boutet de Monvel only in so far as the simplified operator

A’ on 3R is microlocally conjugate to A, without the occurrence of an elliptic factor.

This is important in a discussion of eigenvalues. It is equally possible to obtain,

in (16), the lower order terms in the apparently simpler form S (y,D ) . The reason for
Y

(16) is clarified by (17) below. A result similar to Proposition 1 has been obtained.

by M. E. Taylor (private communication).

The Drincipal symbol of the transformed operator A’ is

2 2 2) 2-0 " A standard method from celestial mechanics suggests the1 + ) n n- IJ . A standard method from celestial mechanics suggests then-1 n-1

introduction of symplectic polar coordinates, v(x,y; E,n) = (8 ,y’ ; r, r)’)
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The square-root in (17) which gives

makes V symplectic and also ensures that

is a C 00 canonical relation, at least in I (l;, T1) I  the region of interest.

Using the classical method of Caratheodory [2] one can construct a

generating functions for V. This allows one to implement, or "quantize", o to a

Fourier integral onerator :

which we call the Hermite transform. Here, S1 is realized as the real projective line
1 2mF 1 in which s is the affine variable along the line ( s,1 ) in HR . It is clear from

(19) that

Applying Plancherel’s formula to the x variable~in (19) shows that

where Q is the partial Fourier transform of u in x. Since t = lls is another affine

variable, covering S1 together with s, (20) shows that Tu is COO on S1 apart from

the factor exp( i7T sgn t) . This is just the transition function for the Arnold-4 - 
1

Keller-Maslov bundle, L, over thought of as the Grassmannian of Lagrangian

planes ( lines) in IR 2 . Thus,
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In !(~,n) I  
I T is a Fourier integral operator associated to the canonical

relation (18). Clearly T annihilates odd functions of x. This is its entire kernel

in view of the inversion formula :

where T* is the adjoint with respect to the invariant measures and a is a

translation invariant classical pseudodifferential on S , of order 1/2 and elliptic
in r’ &#x3E; 0. mhe range of T is the Hardy space

of sections extending holomorphically into the interior of the unit disc with
1

boundary S .

Although T is a Fourier integral operator, v is not a canonical

diffeomorphism so Egorov’s theorem is not immediately available. Direct computation

shows that A’ is intertwined by T

with the operator

where it is important to observe that (22) is not quite microlocal (see (17)).

Singularit:ies at (O,y,O,n) E £ 2 are related to the whole circle 0 E s1}.

Thus, it is essential to analyse (23) globally on S1 and since it is
translation-invariant this is conveniently done in terms of Fourier series. If L

is invariantly trivialized by lifting it to the four-fold cover of S1 ~ ~ then

the Hardy space of sections of L is spanned by
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On each of these spaces A" acts as a pseudodifferential operator of order q - 1 :

It is this operator, for the appropriate k, which appears in Theorem 3.

Note that the operator A’ is even under reflection in x, so to

discuss it completely it is only necessary to produce a transformation similar to

(22) for its action on odd functions. Using T itself a microlocal inverse for the

operator D 1 D + ix, which transforms odd to even functions, can be readily
Yn-l x

produced. Then one obtains in place of (23)

where

§ 3. INDICATION OF PROOFS

The proof of Theorem 2 is based on the fact that 8 can be realized,
00 

,

modulo C , as the trace of the solution operator

of the Cauchy problem for P’ in (8). Away from E2 B is microlocally a pseudodiffe-
rential operator and Fourier integral operator methods apply. Thus it suffices to

assume that WF(u0) is concentrated near E 2in

A suitable pseudodifferential partition of unity can be constructed so that WF(u )
o

can be assumed to lie in a small conic neighbourhood of some p E E 2 *
Using the results above one is reduced to solving the Cauchy

problem

has its wavefront set in a conic neighbourhood of

Sl x f(O;O,T’1)1, and B’ is an essentially positive qth root of A" in (23).



XI.10

The solution to (25) can be obtained via Lax’s method [9] for the

Cauchy problem. Thus, look for v in the form

where b is a classical symbol in k,TI coming from the partition of unity.

Applying P" to v in (26) Fourier decomposes it and allows the

construction of B’ as the ath root of

componentwize, uniformly in k. Note that condition (3) says precisely that all the

A" in (24) are elliptic with positive symbols.k .-

For (26) to solve (25) one needs (p to satisfy the characteristic

equation

where y -- [TI 2 - c-r (4k+l) l 
n 

+ S 1 ( Y , 1 ) ) ] with S the principal symbol of S’ in (23).
n-1 n 1 1 .

This can be done by Hamilton-Jacobi theory and yields a real symbol which satisfies

product-type estimates :

1

in 0  k En . The transport equations for the symbol a can be
n n

solved with a satisfying similar estimates (27), of order 0.

The Poisson relation (5) follows readily from (26). To obtain the

asymptotic expansion (6) one needs to further examine (p and a. It turns out these

are "product classical". That is, as n ... 00
. n

where and the (p. are classical in k :
J
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Then (6) follows by computation and use of

Proposition 2 the series

defines a continuous linear map SM (IR where m’ = max (O,m+1 )
mi 

c cll

and Sm (3R) is the space of classical symbols with logarithmic and constant terms.cll

CONCLUDING REMARKS

a) It would be interesting to extend these constructions at least

to the case where E 2 is symplectic of higher codimension; this is not quite
straightforward however since, in particular, there is no simple normal form.

b) For operators of the type considered in Theorem 1 there is an

analogue of Theorem 3. Namely, Ivrii and Petkov [8] and H8rmander [7] obtain

necessary conditions for the solvability of the Cauchy problem for a differential

operator of second order. These are readily microlocalized as necessary conditions

for the solvability of the microlocal Cauchy problem and in the present case (the

simplest examples of non effectively hyperbolic operators) take the form

weakening condition (1). The methods above reduce the study of sufficiency to the

microlocal solvability of the Cauchy problem for an induced operator

under the assumption that B’ is of order 1 with non negative principal symbol.

When the principal symbol of B’ is independent of t in (29) this Cauchy problem

is solvable. More generally solvability can presumably be studied using the

methods of [7] , [8] .
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