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§ 1. The propagation of waves in a domain 0 c R is usually
described by a differential equation, Lu =0 on [0, T~ 

, 

x C2 and a boundary

condition Bu = 0 on which describes the interaction of waves

with the boundary. In fact, we are so used to thinking in these terms

that we do not wonder why such models are so effective. In reality no

wall contains waves perfectly, there is always some leakage to the

outside of 0. A more complete description of the phenomena would involve

a differential equation Lu = 0 x Rn where L = L in x 0 and
N 

L is very different from L outside Q because the medium outside 0 is very

different from that inside. In order for the boundary value problem to

provide a good model one must have I u - ill small in (0,T] xQ . If the

boundary value problem L,B is well posed this would follow from the

equality of u and u at t = 0 and an estimate Bu small From

this point of view boundary value problems are approximations to more

precise models in all of space. They are introduced because they are
N 

easier to study than the original problem Lu = 0. This has an important

consequence :

If a boundary value problem is too difficult to solve one

should reconsider its origins. Perhaps it is not a simpli-

fication at all.

This is a path very rarely taken.

In addition it is important to have some theorems which justify

the introduction of boundary conditions as models of interfaces where

large changes in physical quantities occur.
. 

In this lecture I will discuss two such theorems. More results

and the details of the proof can be found in the paper [ij of Claude Bardos

and myself. The underlying philosophy is discussed in an unpublished set

of lecture notes 12i by K. 0. Friedrichs which contain a heuristic

derivation of the results described below. I would like to

express my thanks to Professor Friedrichs for teaching me these, and

many other things.

The point of view expressed so far is : given L x 1Rn

find a boundary value problem on whose solutions furnish approxi-

mations to solutions of Lu. In the last section of this paper we consider

the inverse problem : given a boundary value problem on 10,Tl xQ find
a singular problem if on [0,T] x En whose solutions are close in [0,T] xQ
to solutions of the given problem. For symmetric hyperbolic systems and
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strictly dissipative boundary conditions (exactly the boundary value

problems found in the original approach) we show that this is possible,

and in several ways. These results are potentially useful in the numerical

solution of such dissipative mixed initial boundary value problems.

Typically it is not easy to include boundary conditions (or even an)

in the discretizations used in numerical analysis. A way to avoid this

problem is to pass from the original problem to the problem Lu = 0 in

all of space and then discretize. The price you pay is that some coeffi-

cients of L will be large so the associated time evolution will have

two natural time scales, a feature which often makes numerical analysis
difficult. The resultsin this final section are new and complete proofs

are given.
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§ 2 A THEOREM

We will discuss two (singular) perturbations of the symmetric

hyperbolic operator

The operator L is assumed to satisfy the following basic hypothesis

(i) A.(t.x) E is self adjoint for i= 0,1,2,...,n and all

(t,x) E [0,T] 
(ii) 61&#x3E; 0 in the sense of quadratic forms for all

t,x x En.

(iii) A. and B are smooth with each derivative uniformly bounded on

i , x 
n

x R .

Let P(t,x) be a matrix valued function such that

(vi) P is smooth in [0,T] x (]Rn B0) with each derivative uniformly bounded.

The region Q is assumed to be open with 8Q smooth compact and Q lying on

one side of bQ.The operators L on [0,TJ x Rwhich we will study are

with X » 1. In particular we study the behaviour as À.-+ 00, of the

solutions 

This equation is a wave equation on Rn with a singular term which

impedes penetration of waves into Rn B0. For X&#x3E;&#x3E; 1 we will show that

u~ is small outside Q and will find a boundary operator B so that L,B
defines a well posed mixed initial boundary value problem in 10,Ti 

; 

x ~

and Bu is small on I 0 , T ] 
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It follows that inside 0 uzu where u is the solution of

To carry out this program we need an additional technical hypothe-

sis which is needed to show the well-posedness d both the limiting

boundary value problem and the Cauchy problem for L+ XP a
(vii) There is a smooth vector field v(t,x) on [0,T" x IRn such that

for X69Q? v(t,x) is the outward pointing unit normal to õO and rank

(E Aivi) is constant on a neighborhood of each component of [0, Tj 
J J

Imprecisely, bQ is characteristic of constant multiplicity. If

the wave equation Lu= 0 has no zero sound speeds this hypothesis is

always satisfied with rank (E Aiti) = k(-/0).
J J

We can now proceed with the analysis of uÀ.. The first step is

to show that the waves are effectively confined to the region 

Computation ~1 : Showing u- -* 0 in [0,T] xn.
First consider the problem with The standard energy identity

is

where

Gronwall’s method yields

where a depends on the coefficients of the equation but not on X. It

follows that for 0 _ t  T
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(this uses the fact that u(O,x) = 0 if x Q), so uÀ 0 outside Q.
-

For the problem with L=L+XP a similar analysis yields

so again u- -* 0 outside 0 e

For both problems we have shown that for X large,waves cannot

penetrate much into the exterior of Q. It is reasonable to expect that

the u~ can be approximated by solutions of a boundary value problem in O.
I will next outline an argument which identifies the boundary condition.

There are many methods of doing this, matched asymptotic expansions and

boundary large expansions are two from the usual toolbox of an analyst.

The argument below is chosen because it leads to a proof of convergence

to the appropriate limit. For maximal clarity we carry out the computation

assuming that the A ., B, P are constant and that 0 = x : x 0 . ThisJ
contains the heart ofthe proof without the technical complications

caused by the fact that the usual localizations must be handled with

care since some of the "error terms" contain large parameters so must be

trmted with respect.

Co utat,ion #2 : Guessing the boundary conditions.

In the simplified situations under consideration we have

and we have, from computation 1~ a uniform bound on u- in the space
L(10,T] We treat the case where L= L + XP. From the bound on u.L 

o 5u x
it follows that and for i&#x3E;2 considered as functions of x, are§7 Ox. 
bounded in X]Rn-1)). It turns out that for g E Hi n&#x3E;
one gets boundedness of these "tangential derivatives" in 
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(see § 3). We write the equation for u- in the form

By an appropriate choice of orthonormal basis in ~k we may assume that

where t D+ are positive diagonal matrices .

corresponding to this spectral decomposition of ~k. -

Notice that the boundary term is positive. Applying Schwartz inequality

on the right we first obtain that

which we already knew. With this bound for v+ we have from the boundary
term

For (t,x) E let 1t + be orthogonal projection of C onto the

positive eigenspace of We have shown that
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Thus u~ "almost" satisfies the boundary conditions 0 .

Perhaps surprisingly, one finds the same boundary condition
9

when This fact is made at least plausible by taking Laplaceat 
’j 

p Y g p

transform of the equation LUÀ = 0 assuming the coefficients do not depend
on t- One obtains for the transform 

Since u(0) vanishes outside 0 the right hand side is bounded independent
of X so we have

which for Rer&#x3E;0 can be analysed in the same way as equation (1). The

proof proceeds along different lines, as it must to treat equations

with time dependent coefficients. o

When Q is not a half space the role of A1 in the description
of the boundary condition is played by

where v is the unit outward pointing normal to In addition, for

we let P(t,x) be the limit of P from outside Q (the limit from

the inside vanishes).

For let be orthogonal proj ect ion of

k onto the positive eigenspace of P -1/2 AvP -1/2 then the solution ux
satisfies

To complete the story we must show that in [0, T] xo the wave
equation L together with the boundary operator n + p+1/2 defines a well
posed problem.Once that is done it will follow that

in Q where u is defined by
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Now the general theory of mixed initial boundary value problems

for hyperbolic systems is complicated. However, for symmetric hyperbolic

systems there is one class of well set boundary conditions which is easy

to describe , the maximal dissipative boundary conditions. Notice that

the condition n+P u = 0 is equivalent to u E M(t, x) =- nullspace (r+P ) .
The boundary condition is called maximal dissipative if

(i) (¥-(t,x) E [ 0, T] 0)

( i i ) dim M = dimension of nonpositive spectral subspace of A.

The second condition implies that M cannot be enlarged without violating

(1).

Computation #3 : Showing that the boundary conditions are maximal

dissipative.
If mE 9k and P1/2m = 0 let v = P1/2 m then v is in the span of the

eigenvectors of P 1/2A with nonpositive eigenvalues so

On the other hand

Thus M satisfies (i). Since P1/2 is invertible,

and it is not difficult to show that dim is independent of the
+

positive matrix P. Taking P= I yields (ii). r

We have now sketched the core of a proof of the following result.
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4

Theorem : 
Let L be as above and L = L + XP and u~ be the solution of

Then as X - 00,

and

where u is the unique solution of

Here the value P 1’/2 (t,x) is the limit from and 7t is the spectral
projection of P 1/2 A v P 1/2 corresponding to positive eigenvalues.

It g6L (n) the above result is true with 0(X ) and 0(X ’ )
replaced by o(1) .

If L= L+ XP b the above assert ions are true with and

-1/2 ) replaced by 0(X 

§ 3. SOME TECHNIQUES FROM THE PROOF

In addition to the central core of ideas described in § 2 there

are some interesting techniques required in the proof which, I believe,

are critical for the study of problems whereboundary layers develope.
The most important of these involve the derivations of a priori estimates

for "tangential derivatives". The idea is that for a function with a sur-

face across which there is a rapid transition the derivatives parallel
to the surface may be bounded independent of the speed of the transition.
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Typical behavior is

bounded independent of E. A natural approach to such estimates is to

change coordinates so that the surface is =0) and to try to estimate

the derivatives in the directions x2’--"xn- The underlying norm would
then be iiuii + E !t-2013 11 ~ . 

There is a basic flaw in this strategy :
L j&#x3E;2 L2

different choices of coordinates lead to inequivalent norms.

A clearly invariant space of functions is H1 , t an (0) defined (when 0 is

compact) as the set of u E L2(0) such that for any smooth vector field

V(x) on 0 with V,v&#x3E; = 0 on bO we have ~2~~~ " In local coordinates

the norm looks like

The critical change is the inclusion of the

x_

term. Notice

that for the "typical behavior" u , x ,...,x ) such an expression is
e 2 n

bounded independent of c. These "tangential spaces" play a critical

role in [1J. In the framework of our basic theorem in § 2 the main result

is

Theorem : If g E H1,tan(O) then (uÀ.}À.~ 0 is bounded in each of the
following spaces

Remarks : 1) In the theorem of § 2 the condition may be

weakened to 

2) We already used such estimates in Computation 2.

Sketch of proof : The idea is quite simple. One reduces to the case

- -

differentiates the equation L uÀ. = 0 to obtain
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If ~ L, D~ was a linear combination of terms of the form a(t,x)D then

one could apply the standard energy method. The difficulty arises from

[A1---ðO ,D] which may have a a part. However if A were independent of
xi l UAi I 1

(t,x) the above sketch would work.

Lemma : By a nonsingular change of dependent variable u = U(t,x)w we

may reduce to the case A1= constant.

Com utation #4 : Showing why the lemma is true.

For the new function w we have the equation L~Uw) - 0.

Multiply this equation on the left by (in most cases U is not unitary)
we find an equation

The assumption that A has constant rank near each component of ~Q means
that if we choose coordinates so that v is parallel to ~- then A has

constant rank near 0. It follows that we may choose U so that1 1 -

with nl,n2,n3 independent of (t,x) . Notice that it was important to1 J 5 
1

multiply by U# not . This choice is also indicated by a desire to
preserve the symmetry of the coefficients. 0

§ 4. AN INVERSE PROBLEM

Given operator L and a maximal dissipative boundary space M one

can ask if the solution to
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arises as a limit of solutions to the Cauchy problem

for some P (depending on M).

The results just discussed show that this question is equivalent
to the following problem in linear algebra : given a hermitian matrix A

and a maximal dissipitative subspace M for A can you find a positive

hermitian matrix P such that

where E S ~ (p-1~2 A p-1/2) denotes the non positive spectral subspace
°     (symbols E&#x3E;0 , defined similarly).

The answer to this question is no for a simple reason.

Consider f irt the case where A is non singular and M is defined by ~4.1)

for some P. If m E then (P- 1/2 A P- 1/2 ) (E 
0 

= E s0
since A is non singular) so with v = p 1/2

It follows that there is c &#x3E; 0 so that

Thus A is not only non positive in M, it is strictly negative.

In the singular case observe that

and correspondingly

Corresponding to this direct sum decomposition we write m = m + m
and P 1/2 m = then
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so there is a c &#x3E; 0 such that

I f -g null Ais orthogonal projection on null A then I-7t is injective

This is the appropriate definitioncf strict dissipativity in the

singular case.

Definition : If is selfadjoint and is a maximal

dissipative subspace then M is strictly dissipative for A iff (4.2) holds

for some c &#x3E; 0.

Examples : : Choose orthogonal coordinates so that

with ± A+ hermitian and positive. For any vector v write v = (v v , vo) as
_ + - o

the associated spectral decomposition, that is, v+ consists of the

first components of v,if A is £ x £ ...etc. The space
+ + + + 

M= Eo A&#x3E; = {v: v+ =0) is strictly dissipative. Also the set

is strictly dissipative if S E Hom(E 0 (A), E &#x3E;0 (A» is
small enough. In fact we have the following simple proposition.

Proposition : Suppose that A 
+ 

is £ x ae 
+ 

and A 
- 

is £ x i 
- 

and S is an

j~ x £ matrix then
+ -

is strictly dissipative for A if and only if
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Every strictly dissipative subspace is of this form.

Proof : Consider M defined by (4. 3 ) . Then

some v , v and then
- o

so M is dissipative if and only if

as operators on 

Multiply left and right by (-A-)- 1/2 to see that M is strictly dissipative
if and only if 

The left hand side is B*B with B = A 1/2 S(-A )- 1/2 , and the f ir s t

assertion of the theorem is proved.

To prove the second, suppose M is given and is dissipative.

For m E M with m t 0 one must have m I 0 otherwise Am, m&#x3E; = Am+, m+&#x3E; &#x3E; 0.
+ - 

p- 
+ +

It follows that the map M 3 m - is injective. Counting dimensions

we see that the map is an isomorphism so that there exist S and T so that

However as remarked above, m E M and m+ X 0 0 so we must have
. + -

T= 0.

The main result asserts that it is exactly the strictly

dissipative boundary conditions which arise in the Theorem of § 2.

Theorem : It is self adjoint and is positiveJ P

self-adjoint then the subspace M of C k defined by (4.1) is strictly

dissipative for A. Conversely if M is strictly dissipative subspace for

A then there is a positive P such that (4.1) holds.

Proof : The first part has already been proved. The second part is

proved in two steps. First we treat the case where
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and then we reduce the general case to this one.

First step : Suppose A is the form (4.4) and M is strictly dissipative

for A. Then by the above proposition there is a 
- 

complex

matrix S such that

The positive matrix P is defined by

Now Q is clearly self adjoint and the condition II Sll  1 implies that

Q is positive. Simple calculation yields

and

Thus the strictly dissipative subspace defined by P is
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which is precisely the condition v+ - Sv _ 0.
Thus the result is proved for A of the form (4.4).

Second step : : Suppose that M is a strictly dissipative subspace for A,

a general hermitian symmetric matrix. Choose a nonsingular matrix V

so that

-1 ,, ’j

Then V M is a strictly dissipative for A so by the first step there is

a positive B such that

Thus

Now for any nonsingular W and self adjoint C we have

Apply this identity with W=V* and C = B- 1/2 V*A V B- 1/2 to obtain with
Q =- VB -1/2 V* .

Multiply both sides of (4.5) by (V*)- 1 to obtain

Notice that Q is positive since B is. This identity is of the desired

form with P -1/2 == Q. a
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Open question : Describe all positive matrices P which yield a given

strictly dissipative boundary condition M.

Remark : The boundary conditions we obtain are strictly dissipative.
In particular they are not conservative (recall conservative means

Am,n£&#x3E; = 0 +mE M).

The standard conservative boundary conditions, for example

Dirichlet or Neumann conditions for wave equations do arise as limits

of singular perturbation problems. When phrased in our terns the

corresponding P’s are positive semi-definite but not def inite ~ see ~ 2~ ) .
There is no general theory to cover semi-definite P.
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