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§ 1. INTRODUCTION

We shall consider in this lecture Schrddinger type second

order elliptic differential operators on En of the form :

is a second order differential operator

with continuous coefficients on Rn such that 0 as 00. It

is also assumed that V (and hence also that P) is symmetric when

considered as an operator in L2 with domain of definition 
0

We shall call V(x,D) as short range perturbation if

and some e&#x3E; 0 .

We shall call V an admissible long range perturbation if

V(x,D) = Vs(x, D) + VL(x,D) where VS and VL are second operators such that
the coefficients of Vs satisfy (1) whereas the coefficients VL(x) of

VL are real c1 functions satisfying : 
a

for and some e&#x3E; 0.

It is well known that under the general assumption Va (x) - 0
P admits a unique self-adjoint realization which we denote by H. We

denote by Ho the self-adjoint realization of P 0 = -ð. The essential
spectrum of H consists of the non-negative real axis. If V is an

admissible long range perturbation then it is probable that there are

no positive eigenvalues. (This result is proved in the literature for

a more restrictive class of perturbations). In any case one can prove the

following result.
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Theorem : If V is an admissible long range perturbation then the

positive eigenvalues of H are isolated and have a finite multiplicity.

Before proceeding with the discussion of the main problems

let us mention that the results we shall describe can be extended to

higher order elliptic operators. Also the smoothness assumption

on the coefficients of V can be relaxed considerably (for instance one

can allow general singularities in the coefficients of V in any bounded

part of Rn). For higher order operators one cannot exclude the possibility
of imbedded eigenvalues in the continuous spectrum. Thus given X &#x3E; 0

one can find an infinitely differentiable function V(x) with compact

support such has an eigenvalue at the point 7~.

§ 2. SHORT RANGE PERTURBATIONS

Let us first assume that V is a short range perturbation. In

scattering theory one considers the limits

These limits exist and define two isometric operators W, which are called

the wave operators of (H,H0). It is easy to see that the wave operators

intertwine H and H : HW+ = W+ H . A basic property of wave operatorso - o

is that they are asymptotically complete, i.e. that

where L 2 denotes the subspace of absolute continuity of L 2 relative
ac 

y
ac 

2 2
to H. (In our situation L2 is the orthogonal complement of L2 where
2 

ac 
g p 

p

L2 p denotes the closed subspace spanned by the eigenfunctions of H).
It follows from the above that H 

o 
is unitarily equivalent to H 

ac 
= .

~ ~~ 

ac

The scattering operator is the unitary operator S: L2 ~ L2
defined by W*W . It commutes with H . Set : were ?

+ - + - 0

is the unitary Fourier map. Then S is a unitary operator in L2(Rn)
which commutes with multiplication by the characteristic functions of

the sets (§ : From this it follows that S can be restricted to

the shell E - l§ : = Is I = kl and define a unitary map -j(k): e L2 (L ) -~ L2 (~
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In an obvious way one considers .J(k) as a unitary map : L2(Sn-1)..... L2(Sn-1).
One refers to k - ~(k) as the scattering matrix. It is a non

trivial fact that the operator valued function is defined for all

k&#x3E; 0 and not only for almost all k. ( "0 (k) is defined even if k&#x3E; 0 happens

to be an eigenvalue of H ! ) .

For each fixed k&#x3E; 0 set : T(k) = I - ’~(k) where I is the identity

operator on L2(Sn-1) - T(k) is called the scattering amplitude. It is

known (essentially) that T(k) is a compact operator of a certain C 
p 

class.

For each k denote by the distributional kernel of T(k),

(c~,cu’ ) E If is a function one refers to the

quantity IT(k;w,w’)12 as the scattering differential cross section.
One of the problems we wish to discuss here is the following.

Problem I : Give general conditions which ensure that is a

smooth function on S x Sn-1 off the diagonal .

Now there is another way to define the scattering matrix which

is used (formally) in physics text books. Suppose that the perturbation
V is very short range. Then there exist two families of generalized

eigenfunctions (distorted plane waves) ~ + (x,~ ) for (x,~ ) 

given by the formula 
-

where R(z) = (H - z) 1 is the resolvent operator and where the limit in (5)
is taken in some generalized sense (see Th. 3 later on). Introducing

polar coordinates r = ~ and k= 191, =~/k, one derives under

some strong conditions on V the asymptotic formula :

It turns out that up to a constant factor a (k;w,w’) coincides with the

scattering amplitude kernel,

where y n is some constant depending only on n. In view of the last remarks

the following problems are of interest.
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Problem II : Give general conditions on V which ensure that the proper

generalized eigenfunctions $ (x,) exist as smooth functions of x and §

on 

-

Problem III : Give general conditions on V which ensure the validity

of formulas of the type (6) - (6’ ), relating the scattering matrix and the

asymptotic behavior of the generalized eigenfunctions.

The emphasize in the problems raised is on solutions under

general conditions which would not require the coefficients V a(x) to
decay very rapidly at infinity. An answer of this type is given in the

following.

Theorem 1 : Suppose that V is a short range perturbation of the form

V(x,D) = where the coefficients of the second order

operator V1 are COO functions satisfying

lal £ 2 and some ~&#x3E; 0, while the coefficients of V are C 00

functions which decay more rapidly than any power of lxl as lxl-Co.
Then the following results hold.

(i) The generalized eigenfunctions ~+ (x, ~ ) exist and are C 00 functions
on Rn A1 so,

uniformly in t in any compact set in where m is a number depending

only on n.

(ii) The scattering amplitude has a kernel T(k;w,w’) which is C

on Sn 1 x Sn 1 for (it is also C°° in k&#x3E; 0).

(iii) The formulas (6)-(fi)’ hold except in the forward direction W= wl

in the following generalized sense. Let x(§) be any C function vanishing in
a neighborhood of the point kcu’, X = Const. in some neighborhood of ~.

i The following limit relation holds :n-

This smoothness assumption can be relaxed considerably. If, for instance,

the coefficients of Arm are only continuous functions which decay rapidly,
then conclusions (ii) and (iii) of the theorem hold without any change.
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lwhere y n is a constant depending only on n. (For I- a similar formula

holds with replaced by 

The proof of Theorem 1 is rather technical. We shall make some

comments related to its proof later on. We first, however, discuss a more

general situation.

§ 3. LONG RANGE PERTURBATIONS

We consider the same problems in the more general case when V

is an admissible long range perturbation. Here one encounters right

at the beginning a serious difficulty which concerns the definition of

the scattering matrix. Indeed, it is well known that for long range

perturbations the wave operators defined by (3) need not exist. This

was observed by Dollard in the case of the Schrddinger operator

with Coulomb potential Dollard has shown that in this case one

could remedy the situation by introducing modified wave operators of the

f orm :

where Rt(D) is a suitably chosen pseudo-differential operator with a

real symbol Rt(§). The work of Dollard on existence of modified wave

operators was extended by various authors to a wider class of long range

perturbations (e.g. ~5 ~ , ~ 3 j , [2-j’ , and ~9*.’[ ). The most general results
here are due to HHrmander [9J . Modified wave operators possess

properties similar to those of ordinary wave operators and they serve

the same purpose. In particular they also intertwine H and H .
o

The problem of asymptotic completeness of modified wave operators

(i.e. the question of the validity of (4) for W~) was studied by several
authors in case V is a multiplication operator. Results were first obtained

for special Coulomb like potentials (e.g. ~6~7~ , [4 , [~J and C8 ~ ) .
Recently quite general completeness results were obtained by Kitada 

and by Ikebe and Isozaki [ 10] . The conditions imposed in these last

mentioned papers are more restrictive than those required by Hdrmander

in his proof of existence of modified wave operators. In as yet unpublished
work the author has established completeness of modified wave operators

for the subclass of admissible long range perturbations V(x,D) which

satisfy the Hdrmander’s conditions for existence of modified wave operators.
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We consider from now on Schrbdinger operators - A + V (x, D) with
admissible long range perturbations for which the modified wave operators

exist and are complete. Although modified wave operators W are not
unique (there is more than one good choice of R in (10)), it is easy tot 

1
characterize the class of all modified wave operators. Namely, let W+ be

another pair of modified wave operators, one has the relation :

W~. = W F+(D) where F+(~) are certain functions with ( = 1.

Any pair of asymptotically complete modified wave operators
» 2013 
W+ gives rise to a scattering operator S = W 

+ 
W . Any such S again

commutes with H . One defines as before the scattering matrix k - 

via restriction of S = to the shell’S’ I =k. Although we have now

a whole family of scattering matrices, the relation between any two

scattering matrices ~(k) and -S 1(k) is a simple one ’ namely we have :

where M.(k) are multiplication unitary operators on L2(Sn - 1).
1 ;---.... -.. p

Of course one can consider the whole class of modified wave

operators and the corresponding class of scattering matrices also in the

case of short range perturbations. In that case we have however a

distinguished pair of wave operators and a corresponding distinguished

scattering matrix 4(k). Moreover, the corresponding scattering amplitude

T(k) = I - 3(k) turns out to be a compact operator for each k. For

genuine long range perturbations this does not seem to be case. Namely,

it does not seem that I - 4(k) is compact for any choice of -6 (k) in the

equivalent class of scattering matrices. For this reason for long range

perturbations we shall not consider the kernel of T(k) but rather the

kernel of d(k) off the diagonal. If such a kernel is a function 

for w / cur, then by (11) any other scattering matrix -f(k) will have
I

a kernel of the form :

where M 1 and M 2 are functions of modulus 1. Note that when "5(k) is an

integral operator, then the scattering differential cross section is

uniquely defined for w / u~’ by the expression : I 

With some modifications one can now formulate the three problems
discussed in section 2 in the more general situation of long range
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perturbations. Thus the first problem should be restated in the more

general case as follows.

Problem I° I : Give conditions which ensure that among the equivalent

class of scattering matrices there is a scattering matrix 1(k) having a
smooth integral for 

We now state a theorem which extends Theorem 1 to the case of

long range perturbations.

, Theorem 2 : Suppose that V(x,D) = V0 (x,D) + where the coefficients

I of V° are COO functions satisfying

i(xl !!5,’ 2, while the coefficients of VOO are COO functions which decay
more rapidly than any power of lxl. Then the following results hold

for H = - 6. + V .

(i) There exist two families of generalized eigenfunctions ~+(x,~ )
which are COO on Rn x They also verify the estimate (8).

(ii) There exists a representative scattering matrix 4(k) with a

which is a COO function on Sn-1 for 
(iii) A formula similar to formula (9) relating the generalized

eigenfunctions in (i) and the scattering matrix in (ii) holds. Namely,

there exists a real phase function (~(r;k,c~) _ kr + o(r) as 

such that if is as in (iii) of Theorem 1, then

where yn is a constant.

In this lecture we shall not be able to give the proof of

either Theorem 2 or Theorem 1. Both proofs are long. Instead we shall

describe some related results which are used in the proofs of these

theorems.
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§ 4. GENERALIZED EIGENFUNCTIONS AND GREEN’S FUNCTIONS. A REMARKABLE

RELATION.

We denote by B (E ) the Banach space of functions u E L2 (]Rn)
loc-

such that

.* (]Rn) . n)
By B (E ) we denote the subspace of functions u E B (E ) such that

We also set : « In the framework

of these spaces one can prove a strong version of the so called

limiting absorption principle .

Theorem 3 : Suppose X &#x3E; 0 is not an eigenvalue of H = -A + V(x, D) where
V is an admissible long range perturbation. For any 

s&#x3E; 1/2, the following limit exists

The boundary values have a certain asymptotic
behavior as Thi s can be described as, follows.

Theorem 4 : Suppose that the conditions of Theorem 3 hold. Set X = k2
and introduce polar coordinates x = rw . If

(a) V is short range. Then there exist functions a+(w) = a+(w,k;f)
which are L2 functions on Sn-1 , such that

(b) If V is an admissible long range potential which satisfies certain

conditions (in particular if V satisfies the conditions of Theorem 2), then

there exist phase functions t+(r;k,w) = kr+ o(r) which depend only on V and

an amplitude function a +~cu ) = - at(w,k;f ) E L 2 (8 n-1 ), such that



II.9

The amplitude functions a+(w,k;f) have an interesting connection
with the generalized Fourier maps 3+ : L2- L2 which diagonalize H. Indeed,

for the unperturbed operator H 
o 

one finds by a computation (see [il )
that the amplitude a (w,k;f) in the corresponding formula (14) is given

+

by

where 3 is the usual Fourier transform and (~/2) 1 / ? exp(~Tii(n-3)/4).
For general short range perturbations one obtains a similar result

where U+ are distinguished Fourier maps related to the wave operators (3)

by the formula :

It turns out that formulas (16) and (17) are also valid in the long

range case for a general class of perturbations for which Theorem 4 holds.

Only in this case 9+ is some pair of generalized Fourier maps and W+ is
- -

a corresponding pair of modified wave operators.

One expects that the generalized Fourier maps are given by

the formula

where 0+ are the generalized eigenfunctions. Hence it follows by a

formal application of (16) and (18) to f= 6y, where 5 is the Dirac
Y Y

function centered at y, that

Combining (19) with (14) or with (15) we obtain formall that if

R(k 2+ - io;x,y) denote the kernels of R(k2 ±io) ~i.e. the Green’s functions),
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then one can extract the generalized eigenfunctions ~+ from the kernels

by means of the following formulas :

for short range perturbations, and

+

for long range perturbations, where y n are certain non-zero constants.

The derivation of (20)-(21) which was completely formal can be

justified for a large class of perturbations. (In particular (21) holds

for perturbations satisfying the conditions of Theorem 2). Formulas

(20)-(21) could also be used to define the generalized eigenfunctions.

This approach is particularly useful in the case of long range perturba-

tions where as far as we know it is the only available approach to

establish the existence of the generalized eigenfunctions.
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