SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

J. RALSTON

Diffraction by convex bodies

Séminaire Équations aux dérivées partielles (Polytechnique) (1978-1979), exp. nº 23, p. 1-9

http://www.numdam.org/item?id=SEDP_1978-1979____A23_0

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1978-1979, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

PLATFAU DE PALAISEAU - 91128 PALAISEAU CFDEX

Téléphone : 941.82.00 - Poste Nº

Télex : ECOLEX 691 596 F

SEMINAIRE GOULAOUIC-SCHWARTZ 1978-1979

DIFFRACTION BY CONVEX BODIES

by J. RALSTON

In the spectral theory of the laplacian in exterior domains "distorted plane waves" are fundamental. For the exterior domain $\mathbb{R}^n \setminus K$, where K is a compact set with smooth boundary $\mathfrak{Z}K$, one defines the distorted plane wave $\varphi(x,\omega,k)$ for the Dirichlet problem as follows :

i)
$$(\Delta + k^2)\tilde{\varphi} = 0$$
 on $\mathbb{R}^n \setminus K$,

ii) $\Phi = 0$ on ∂K (Dirichlet condition),

iii)
$$\phi = e^{-ikx \cdot \omega} - v$$
, where as $|x| \to \infty$

$$v = |x|^{\frac{1-n}{2}} e^{-ik|x|} (f(\frac{x}{|x|}) + O(\frac{1}{|x|}))$$
 (Sommerfeld condition).

For a proof of the existence and uniqueness of ϕ satisfying i) - iii) one may consult [11].

This seminar deals with an approximate construction of $\Phi(x,\omega,k)$ in the case that K is strictly convex — in the sense that the normal curvatures of ∂K are everywhere strictly positive. The construction is asymptotic to order k^{-N} for any given N as k tends to ∞ , and it permits the explicit asymptotic expansion of two quantities of interest in scattering theory, the scattering phase s(k) and the forward diffraction peak $a(\theta,\theta,k)$. These can be expressed in terms of $\Phi(x,\omega,k)$ as follows :

$$\frac{ds}{dk} = \frac{1}{8\pi^2} \left(\frac{k}{2\pi}\right)^{n-3} \int_{|\omega|=1} d\omega \int_{\partial K} \left|\frac{\partial \Phi}{\partial \nu}\right|^2 (x \cdot \nu) ds$$

$$a(\theta,\omega,k) = \frac{i}{4\pi} \left(\frac{k}{2\pi}\right)^{n-2} \int_{\partial K} e^{ik\theta \cdot x} \frac{\partial \Phi}{\partial \nu} dS ,$$

where \vee is the unit normal to ∂K_{Λ} pointing into $\mathbb{R}^n \backslash K$. By substituting the approximations for Φ into these formulas one can conclude that ds/dk and $a(\theta,\theta,k)$ have complete asymptotic expansions of the form

$$\sim \sum k^{n_i} (a_i + b_i \log k), n_i \sim \infty,$$

and compute the first few terms :

(1)
$$\frac{1}{2\pi} \frac{ds}{dk} = \frac{n(4\pi)}{\Gamma(1+\frac{n}{2})} k^{n-1} V(K) - \frac{(n-1)(4\pi)}{\Gamma(1+\frac{n-1}{2})} k^{n-2} A (\partial K) + O(k^{n-3})$$

(2)
$$a(\theta, \theta, k) = \left(\frac{k}{2\pi}\right)^{n-1} A(\theta) + c_n k^{n-\frac{5}{3}} \int_{\Gamma} K^{-\frac{1}{3}}(\theta) dS + \cdots$$

Here V(K) is the volume of K, $A(\partial K)$ is volume of ∂K , $A(\theta)$ is the volume of the projection of K onto $\mathbf{x} \cdot \theta = \mathbf{0}$, Γ is the boundary of this projection, dS is the volume form on Γ , and $K(\theta)$ is the normal curvature in direction θ on the pre-image of Γ in K. The constant \mathbf{c}_n is the finite part of a definite integral of Airy functions and depends only on \mathbf{n} .

The constructions given here follows those of Ludwig [3] very closely but make use of improvements made possible by Melrose's proof of the symplectic equivalence of glancing hypersurfaces [7]. For a discussion of (1) one may see [5]. The expansion (2) was derived when K is a sphere by Rubinow and Wu [10], and conjectured for convex bodies by Keller and Rubinow [2]. The leading term was derived rigorously by Majda and Taylor [6]. The complete asymptotic expansion is due to R. Melrose [9]. The method of [9] is different from that used here and appears to be more powerful as it yields the same results for the Neumann problem. Still more refined results on $a(\theta, \omega, k)$ -which permit a uniform expansion near $\theta = \omega$ -have been obtained by Melrose and M. E. Taylor. The construction given here seems sufficiently intuitive -at least to the author - that it may serve as a prologue to the results of Melrose and Melrose-Taylor.

Localization

Using the standard construction of geometric optics one can decompose $e^{-ik\mathbf{x}\cdot\boldsymbol{\omega}}$ into a sum of terms u_e , where

$$u_e = e^{-ikx \cdot \omega} \left(a_0 + \frac{a_1}{k} + \dots + \frac{a_M}{k^M}\right)$$

such that

i)
$$(\Delta + k^2)u_e = 0(k^{-N})$$

ii) the projections of the supports of u_e onto $x \cdot w = 0$ can be made subordinate to any given cover of $x \cdot w = 0$.

The strategy here will be, given u to construct a u satisfying

i)
$$(\Delta + k^2)u_s = 0(k^{-N})$$

- ii) $u_s = -u_e$ on ∂K
- iii) $\mathbf{u}_{\mathbf{S}}$ satisfies the Sommerfeld condition.

Actually one has only to construct u_s on a neighborhood of ∂K in $\mathbb{R}^n \setminus K$ satisfying i) and ii) with wave fronts -or more precisely "frequency set" (see [1]) - over points near ∂K but strictly inside $\mathbb{R}^n \setminus K$ directed toward ∂K . Then u_s can be extended to satisfy the Sommerfeld condition by the outgoing Green's function for the laplacian on \mathbb{R}^n (see [4], pp.521-3).

If the projection of the support of u_e on $x\cdot w$ does not intersect Γ , the construction of u_s is a standard application of geometric optics. Hence from here on we consider only u_e whose support projects onto a neighborhood -which we may take as small as we wish - of a point on Γ .

The Ludwig-Melrose construction

The idea here is to find a representation of \mathbf{u}_{Δ} in the form

(3)
$$u_e = \int_{\mathbb{R}^{n-1}} e^{ik\theta} (a A_i(-k^{2/3}\rho) + bA_i'(-k^{2/3}\rho)) d\xi + O(k^{-N})$$

where the integrand is an asymptotic solution to $(\Delta + k^2)w = 0$ uniformly in ξ , and one has additionally

(4) i)
$$\rho = \xi_1$$
 and $\frac{\partial \rho}{\partial v} > 0$ on ∂K ,

(5) ii)
$$b = 0$$
 on ∂K .

The function Ai is the standard Airy function

Ai(s) =
$$\int_{-\infty}^{\infty} e^{i(\beta s + \frac{\beta^3}{3})} d\beta ,$$

and a and b have the form

$$a = \sum_{i=0}^{R} a_{i}(x,\xi)k^{-i+\frac{n}{2}-\frac{1}{3}}, b = \sum_{i=0}^{R} b_{i}(x,\xi)k^{-i+\frac{n}{2}-\frac{2}{3}}.$$

Once we have (3) - (5) the function u_s will be given by

(6)
$$u_s = -\int_{\mathbb{R}^{n-1}} e^{ik\theta} (aA(-k^{2/3}\rho) + bA'(-k^{2/3}\rho)) \frac{A_i(-k^{2/3}\xi_1)}{A(-k^{2/3}\xi_1)} d\xi$$

where A(s) = Ai(e $\frac{2\pi i}{3}$ s). Note that , since A satisfies Airy's differential equation, the integrand is automatically an asymptotic solution to $(\Delta + k^n)w = 0$ in $\mathbb{R}^n \setminus K$ -since A(s) is exponentially increasing as $s \to +\infty$, we use the fact $\rho > \xi$ in $\mathbb{R}^n \setminus K$ here. The choice of A is made so that the frequency set of u_s is directed toward ∂K from $\mathbb{R}^n \setminus K$.

As we mentioned earlier the constructions here are strictly local. We assume that we are given $x_0 \in \partial K$ with $\omega \cdot v(x_0) = 0$ and, writing $\xi = (\xi_1, \xi')$, a ξ'_0 such that $\nabla \theta(x_0, 0, \xi'_0) = -\omega$. All the assertions (of existence etc...) in the constructions that follow are to be qualified by "for (x, ξ) in a neighborhood of $(x_0, 0, \xi'_0)$ " -even though this will always be omitted. Just how small the support of u_e must be is only determined at the end of the construction.

The representation (3) with conditions (4), (5) is the delicate part of the construction. One first determines θ and ρ and then a and b. In order that the integrand in (3) be an asymptotic solution to $(\Delta + k^2)w = 0$, θ and ρ must satisfy the "eichonal" equations :

(7)
$$|\nabla_{\mathbf{x}} \theta|^{2} + \rho |\nabla_{\mathbf{x}} \rho|^{2} = 1$$

$$\nabla_{\mathbf{x}} \rho \cdot \nabla_{\mathbf{x}} \theta = 0$$

on $\rho \geq 0$. These equations are solved by choosing a smooth family of strictly convex surfaces S_ξ with $S_\xi = \delta K$ when $\xi_1 = 0$, and defining $\rho(x,\xi) = 0$ on S_ξ . Note that, since we want $V_x \rho \neq 0$, this implies $\left| \nabla_x \theta(x,\xi) \right|^2 = 1 \text{ on } S_\xi \text{ and } \nabla_x \theta(x,\xi) \text{ is tangent to } S_\xi \text{ . Thus we must choose } \theta \text{ on } S_\xi \text{ to be a solution of the surface eichonal on } S_\xi \text{ . With these choices } 7a) \text{ and } 7b) \text{ determine } \theta \text{ and } \rho \text{ uniquely for } x \text{ outside } S_\xi, \text{ i.e. in the region where we will have } \rho \geq 0 \text{. The condition (4) implies and, modulo a change of variables in } \xi, \text{ is equivalent to the following geometric}$

condition on S_{ξ} and θ $^{r}S_{\xi}$: if the straight line through $x_{0} \in S_{\xi}$ with direction $V_{x}\theta(x_{0},\xi_{0})$ hits ∂K at x', then the reflection of this line in ∂K is, for some $x_{1} \in S_{\xi_{0}}$, the line through x_{1} with direction $V_{x}\xi(x_{1},\xi_{0})$. In [3] the surfaces S_{ξ} were only chosen so that (4) held up to an error which was $O(\xi_{1}^{N})$ for all N. However, it is a direct consequence of [7] (the derivation is given in [8] that S_{ξ} and θNS_{ξ} can be chosen so that (4) holds exactly. Then one completes the construction by extending θ and ρ as C^{∞} functions in the complement of $\rho \geq 0$, maintaining (4).

If we replace Ai and Ai' by their integral representations, (3) becomes

$$\mathbf{u}_{\mathbf{e}} = \int \mathbf{e}^{\mathbf{i}\mathbf{k}(\boldsymbol{\theta} - \boldsymbol{\beta}\boldsymbol{\rho} + \frac{\boldsymbol{\beta}^3}{3}} (\mathbf{a} + \mathbf{i}\mathbf{k}^{1/3}\boldsymbol{\beta} \mathbf{b}) d\boldsymbol{\xi} d\boldsymbol{\beta} .$$

Note that, writing $\xi = (\xi_1, \xi')$, if $\det \frac{\partial^2 \theta}{\partial \xi' \partial \xi'} \neq 0$, then this integral can be expanded by the method of stationary phase. If the result of this expansion agrees with u_{Δ} , then we must have

(8)
$$-\mathbf{x} \cdot \mathbf{\omega} = \Phi(\mathbf{x}) \equiv (\theta - \beta \rho + \frac{\beta^3}{3}) \uparrow \xi = \xi(\mathbf{x}), \beta = \beta(\mathbf{x}),$$

where $\xi(x)$ and $\beta(x)$ are defined by

$$\theta_{\xi} - \beta \rho_{\xi} = 0$$
 and $-\rho + \beta^2 = 0$

However, since Φ is automatically a solution of the standard eichonal $(|\nabla \Phi|^2 = 1)$ it suffices to have (8) hold for x on a surface transverse to ω . The eichonal equations (7) and condition (4) remain valid if we replace θ by $\theta + \psi(\xi)$, and we must exploit this freedom to obtain det $\frac{\partial^2 \theta}{\partial \xi'} \frac{\partial \xi'}{\partial \xi'} \neq 0$ and (8) .

Introducing local coordinates (z,y) where z=0 on ∂K , $\partial f/\partial z=\partial f/\partial \nu$ on ∂K and $y_1=x\cdot \omega$ on ∂K , we can assume $S_{\tilde{S}}$ is given by $z=\alpha(y,\xi)$. Writing $y=(y_1,y')$, it is a consequence of the constructions in [7] that $S_{\tilde{S}}$ and $\partial f S_{\tilde{S}}$ can be chosen so that $\det \partial^2 \theta/\partial y \partial \xi \neq 0$ (this is used in [8]) and $\det \partial^2 \theta/\partial y' \partial y' \neq 0$. We let β denote $x\cdot \omega$ written as a function of (z,y).

To achieve 8) we begin by solving $(\theta_z, \theta_y) = (\beta_z, \beta_y)$ on $z = \alpha(y, \xi)$ for $y = y(\xi)$. This is over determined, but since $|\nabla_x \theta| = |\nabla_x (x \cdot \omega)| = 1$ when $z = \alpha(y, \xi)$ it suffices to solve $(\theta_z, \theta_y) = (\beta_z, \beta_y)$ on $z = \alpha(y, \xi)$. To check the hypothesis of the implicit function theorem, we set $\xi_1 = 0$ (so that $\alpha = \theta_z = 0$) and compute

$$\begin{pmatrix}
\frac{\partial^{2}(\theta - \beta)}{\partial z \partial y_{1}} & \frac{\partial^{2}(\theta - \beta)}{\partial z \partial y'} \\
\frac{\partial^{2}(\theta - \beta)}{\partial y' \partial y_{1}} & \frac{\partial^{2}(\theta - \beta)}{\partial y' \partial y'}
\end{pmatrix} = \begin{pmatrix}
-\frac{\partial^{2}\beta}{\partial z \partial y_{1}} & -\frac{\partial^{2}\beta}{\partial z \partial y'} \\
\frac{\partial^{2}\theta}{\partial y' \partial y_{1}} & \frac{\partial^{2}\theta}{\partial y' \partial y'}
\end{pmatrix}$$

Since $\partial^2 \beta/\partial z \partial y_1$ is nonzero by the strict convexity of ∂K , and we may assume $\partial^2 \theta/\partial y' \partial y_1$ vanishes at the base point, we conclude that $(\theta_z, \theta_y) = (\beta_z, \beta_y)$ can be solved for $y(\xi)$ on $z = \alpha(y, \xi)$.

Now we defined ψ by the requirement

(9)
$$\theta_{\xi}(\alpha(y(\xi),\xi),y(\xi),\xi) + \psi_{\xi} = 0 \quad \cdot$$

To check that

$$\theta_{\xi\xi} + \theta_{\xi z} \alpha_{y} y_{\xi} + \theta_{\xi y} y_{\xi}$$

is symmetric, we note that

$$\theta_{\mathbf{z}\xi} + \theta_{\mathbf{z}\mathbf{z}} \alpha_{\mathbf{y}} Y_{\xi} + \theta_{\mathbf{z}\mathbf{y}} Y_{\xi} = \beta_{\mathbf{z}\mathbf{z}} \alpha_{\mathbf{y}} Y_{\xi} + \beta_{\mathbf{z}\mathbf{y}} Y_{\xi}$$

$$\theta_{\mathbf{y}\xi} + \theta_{\mathbf{y}\mathbf{z}} \alpha_{\mathbf{y}} Y_{\xi} + \theta_{\mathbf{y}\mathbf{y}} Y_{\xi} = \beta_{\mathbf{y}\mathbf{z}} \alpha_{\mathbf{y}} Y_{\xi} + \beta_{\mathbf{y}\mathbf{y}} Y_{\xi}.$$

Since (9) determines ψ up to an additive constant, we complete the construction of ψ by choosing this constant so that $\theta + \psi = -\mathbf{x} \cdot \boldsymbol{\omega}$ at the base point. Further work along exactly, the same lines shows that $\det \frac{\partial^2 (\theta + \psi)}{\partial \xi} \neq 0$ (This uses $\det \frac{\partial^2 \theta}{\partial y \partial \xi} \neq 0$) and that

 $z = \alpha(y(\xi), \xi))$, $y = y(\xi)$ defines a surface transverse to ω . Then it follows that (8) holds when θ is replaced by $\theta + \psi$.

We will not discuss the construction of the amplitudes $a(x,\xi,k)$ and $b(x,\xi,k)$ here. In [3] a and b are constructed so that , given the preceding construction of θ and ρ , (3) holds and in place of (5) one has $b=0(\xi_1^N)$ for any N on ∂K . The modifications needed to improve this to (5), i.e. b=0 on ∂K are substantially simpler than those that were used in obtaining (4) - no use of [7] is involved. Actually, imposing (5) for all $x\in\partial K$ (or even the weaker condition $b=0(\xi_1^N)$) would make it impossible to keep the intersection of the support of a and b with ∂K strictly inside the set where θ and ρ are defined. This is a turn would prevent us from making the integrand in (3) an asymptotic solution to $(\Delta+k^2)w=0$ on a neighborhood of ∂K in $\mathbb{R}^n\backslash K$. However, we only impose (5) for (x,ξ) in a small neighborhood of the base point. Provided the projection of the support of u is made sufficiently small, one still has $u_s(x,k)+u_e(x,k)=0(k^{-N})$ for $x\in\partial K$ in this case.

The representation of ad/av

Away from the intersection of ∂K with the pre-image of Γ the expansion of $\partial \Phi/\partial \nu$ is easy to compute from geometric optics; the leading term is

$$\frac{\partial \Phi}{\partial v} = \begin{cases} -2ik\omega \cdot ve^{-ikx \cdot \omega} & \text{if } \omega \cdot v < 0 \\ 0 & \text{if } \omega \cdot v > 0 \end{cases}$$

(the "Kirchhoff approximation"). The next term is O(1) and it does not contribute to the second term in (1) and (2).

In a neighborhood of a point $x_0 \in \partial K$ where $\omega \cdot \vee (x_0) = 0$, i.e. a point that projects to Γ , one can combine (3)-(6) to get

$$\frac{\partial \Phi}{\partial v} = \int_{\mathbb{R}^{n-1}} e^{ik\theta} \left(-k^{2/3} \frac{\partial \rho}{\partial v} a + \frac{\partial b}{\partial v}\right) F(-k^{2/3} \xi_1) d\xi + O(k^{-N})$$

where $F(x) = Ai'(x) - \frac{A'(x)}{A(x)}$ Ai(x). Expanding by stationary phase in the variable ξ' , this can be further simplified to a representation in the form

$$(10) \frac{\partial \Phi}{\partial \nu}(\mathbf{x}, \mathbf{k}) = \int_{\mathbf{R}} e^{i\mathbf{k} \widetilde{\theta}(\mathbf{x}, \xi_1)} G(\mathbf{x}, \xi_1, \mathbf{k}) F(-\mathbf{k}^{2/3} \xi_1) d\xi_1 + O(\mathbf{k}^{-N})$$

where G has the form

$$G = \sum_{i=0}^{M} G_i(x, \xi_1) k^{\frac{1}{6} + i}$$

Substituting (10) and the analogous expression (derived from (3)),

$$e^{-ikx\cdot\omega} = \int_{\mathbb{R}} e^{ik \, \widetilde{\theta}(x,\xi_1)} H(x,\xi_1,k) \operatorname{Ai}(-k^{2/3}\xi_1) \, d\xi_1 + O(k^N)$$

into the integral formulas for ds/dk and $a(\omega,\omega,k)$ one derives (1) and (2). The crucial advantage here of (10) over the formulas that could be obtained from [3] is that one can eliminate the oscillatory $e^{ik\widetilde{\theta}}$ factors by an integration in an x-variable without disturbing the Airy functions. At the final stage in the derivation of (1) and (2) one must expand integrals of the form

$$\int_{\mathbb{R}} H(s)G(-k^{2/3}s)ds$$

where G is a polynomial in A'/A, \overline{A} '/ \overline{A} , Ai and their derivatives; it is here that the k^r logk terms seem to appear in the asymptotic expansions. It is known that there are no logarithms (and only integral powers of k) in the expansion of ds/dk (see [5]), but unknown whether logarithms actually appear in the expansion of $a(\theta, \theta, k)$.

REFERENCES

- [1] V. Guillemin and S. Sternberg : Geometric asymptotics, Math. Surveys, n^o 14, AMS, Providence, 1977.
- [2] J. Keller and S. I. Rubinov, J. Appl. Phys. 32 (1961), 814-820.
- [3] D. Ludwig, Comm. Pure Appl. Math. 20 (1967), 103-138.
- [4] A. Majda and J. Ralston : Duke Math. J. 45 (1978), 513-536.
- [5] A. Majda and J. Ralston: An analogue of Weyl's theorem for unbounded domains, III, preprint 1979.
- [6] A. Majda and M. E. Taylor : Comm. Pure Appl. Math. 30 (1977), 639-669.
- [7] R. B. Melrose: Invent. Math. 37 (1976), 165-191.
- [8] R. B. Melrose: Parametrices at diffractive points (MS.1975).

XXIII.9

- [9] R. B. Melrose: Forward scattering by a convex obstacle, preprint 1978.
- [10] S. I. Rubinow and T. T. Wu : J. Appl. Phys. 27 (1956), 1032-1039.
- [11] N. Shenk and D. Thoe: J. Math. Anal. and Appl. 36 (1971), 313-351.