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§ 0. INTRODUCTION 
’

The results presented here have been obtained in collaboration

with M. S. Baouendi and F. Treves. We deal with a linear partial

differential operator P = P(x, D) of order m ~ 1 with complex-valued

coefficients defined and analytic in an open subset Q of Rn . . If M is

an analytic submanifold of Q, we are interested in the question of

whether one can find solutions of the homogeneous equation

(0.1) P(x,D)u = 0

which are flat or, alternatively, singular precisely on M . (We say that

a C function is flat on M if all its derivatives vanish there) .

This is of course a topic on which many results are known, begin-

ning with the classical Holmgren’s theorem which concerns non characteris-

tic hypersurfaces. Let us introduce some terminology and notation :

by we denote the cotangent bundle over Q from which the zero

section has been excised ; by N4’(M) we mean the conormal bundle over M,

which is the subset of consisting of the points (x,~ ) with x in M

and ~ orthogonal to all tangent vectors to M at x ; by Char P the

characteristic set of P, i. e. the subset of T"QNO where the principal

symbol pm(x,~) of P vanishes. We shall say that M is noncharacteristic

(with respect to P) if and Char P do not intersect, that M is totally

characteristic if N*(M) c Char P , and finally that a hypersurface S is

simply characteristic at one of its points, x 0, if p m (x01 ~0) = 0 and
/ 0 where §° is the normal to S at x°.

Holmgren’s theorem implies that if codim M = 1 and M is non charac-

teristic, any C solutions of (0.1) which is flat on M must vanish identi-

cally in a full neighborhood of M. The work [2] extends this result to the

case of codim M &#x3E; 1.

On the other hand, when M is totally characteristic there are

cases in which one can prove the existence (in a neighborhood of a

point of M) of solutions of (0.1) which are flat on M and non vanishing

(in fact are analytic) in the complement of M. When M is a hypersurface

such a result is an immediate consequence of the work of Mizohata ~8~ in

the simply characteristic case, and has recently been obtained by

Komatsu [7J in the constant multiplicity case. Theorems 1 and 1F below

extend Mizohata’s result in a different direction by allowing codim M to

exceed I.
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There are cases which fall between those two categories

(non characteristic and totally characteristic) in which it is still

possible to prove the existence of solutions which are flat on M and

vanish nowhere else. The model for such behavior is provided by the

Mizohata operator

Here, our manifold M is the origin in IR2 , which is neither noncharacte-

ristic nor totally characteristic. The function (C~ in E2 and analytic
in 

(where z 1/2 &#x3E;0 for z&#x3E; 0) satisfies Lu = 0 in R2 , I is flat at (0,0) and

does not vanish anywhere else. Theorems 2, 2’, 3 and 3’ stated below gene-

ralize this kind of result.

The construction of flat solutions can be slightly modified to

yield (under the same hypotheses) solutions of (0.1) which are analytic
in the complement of M and have singular support exactly equal to M. For

instance, in the above example of the Mizohata operator, the function

is such a solution of Lu = 0.

We present in section 1 the statements of our results and in

section 2 an outline of the proofs. The details can be found in ElJ
(See also [l2] for the first order, completely characteristic case).

§ 1. STATEMENT OF RESULTS

We consider first the case in which the manifold M is totally

characteristic. For the statement of the theorem we need the following

definitions (see [4] and ’61).
Let f be a complex valued COO function defined in some open subset

(g of T*0B0. The Hamiltonian field of f is the complex vector field over (g,
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A C1 curve r : I - 0 ( I an interval in R) is called a bicharacteristic of

f if, for everytel,

Note that at each point of a bicharacteristic the real part and the imagina-

ry part of H must be parallel. A semibicharacteristic of f is a bicharac-

teristic of Re(qf) for some C~ function q in 0, q/ 0. Note that if f is

real-valued, any semibicharacteristic of f on which f vanishes is a

bicharacteristic of f. Moreover, if g is any nonvanishing complex valued

C function in (3, a (semi)bicharacteristic of f is also a (semi)bicharac-

teristic of gf.

Theorem 1 : Let M be an analytic submanifold of Q, totally characteris-

tic with respect to P. Suppose that there exists an analytic hypersurface
S containing M and having the following properties :

(1.3) S is simply characteristic along M.

( 1. 4) The only semibicharacteristics of p m leaving 
characteristics of p m .

Then the following conclusions hold :

(a) every point x 0 EM has an open neighborhood U(x 0 C: 0 in which there

is a Coo solution of (0.1), flat on M, and analytic and nowhere zero in

U(xo)BM.

(b) Given any integer p &#x3E;- m and any point x 0 E M, there is a Cp

solution u of (0.1) in an open neighborhood V such that

(1.5) u is analytic in V 

(1.6) u is not in the neighborhood of any point of

L M n v (xo) .
’ 

P

The conjunction of (1.5) and (1.6) implies that the Cn singular
I
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support of u [in Vp(xo)l is equal to its analytic singular support and

is exactly equal to Mn V p (x ) .
It should be remarked that the hypothesis that M is totally

characteristic and contained in a hypersurface which is simply

characteristic along M implies that

Indeed if M were a point x°, then pm(x0 = 0 for al l ~ c IRn- Hence

0, and no hypersurface through x° could be simply charac-

teristic at x°.

Let us examine the hypothesis (1.4) more closely. It can be

shown, by examining the Hamilton Jacobi equations for the bicharacteristics,

that if M is any totally characteristic manifold, any semibicharacteris-

tic of p m intersecting N*(M) must be completely contained in N~’(M).

Condition (1.4) states that if a semibicharacteristic of p m contains points
of E = n N*(S) and points of then it must be a bicharacte-

ristic of p . Now, if S were a simply characteristic hypersurface, no
m

semibicharacteristic of p m can leave Since it cannot leave 

it cannot leave E, and we have proved :

Corollary 1 : Suppose that the analytic manifold M is totally

characteristic and contained in a simply characteristic hypersurface S.

Then the conclusions (a) and (b) of Theorem 1 are valid.

Another corollary follows easily if p m is real. In this

case any semibicharacteristic r of p m intersecting is necessarily
a bicharacteristic of 6 . Indeed r stays in N*(M) on which pm vanishes and

m ’ 

m

therefore r must be a bicharacteristic of p m (by the remark following the
definition of semibicharacteristics) .

Corolla 2 : Suppose that the principal symbol of P is real and let

M be an analytic submanifold of Q, totally characteristic and contained

in an analytic hypersurface S which is simply characteristic along M.

Then conclusions (a) and (b) of Theorem 1 are valid.

For first order operators we prove in [12] :

Theorem IF : Let P be first order and nondegenerate (i.e. its princi-

pal part p,(x,D) does not vanish identically at any point of 0) and let

the analytic submanifold M of Q be totally characteristic with respect to

P. Then conclusion (a) and (b) of Theorem 1 are valid, and moreover,

(c) Every point xoE M has an open neighborhood U ( x°) c Q in which
there is a (distribution) solution u of (0.1) such that supp u = si;jg supp u =

U(X°) n M.
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Actually conclusion (a) of this theorem can be proved as a corolla-

ry of Theorem 1, as is done but a simple direct proof, which takes

advantage of the fact that P is first order, is given in [121 - A slight
modification of this proof yields conclusion (b). Conclusion (c) was first

proved in [l3] for the case in which M is a leaf of the natural foliation

of Q defined by the Lie algebra generated by the real and imaginary parts
of the principal part of P. The proof in Ll3] does not make full use of

the leaf structure of M but only uses the fact that M is totally characte-

ristic with respect to P. In connection with this we should mention the

following easily proved proposition.

j Proposition 1 : Suppose that P is first order and let A+ iB denote its
-- .

principal part with A and B real (and real analytic) vector fields in 0.

An analytic submanifold M of 0 is totally characteristic with respect to

P if and only if every vector field in the Lie algebra generated by A and

B is tangent to M.

The connected analytic manifolds which are totally characteris-

tic with respect to A+ iB and are maximal with respect to connectedness

and minimal with respect to dimension are called the leaves of the

natural foliation of Q defined by the Lie algebra generated by A and B.

According to a Theorem of Nagano [9], through every point of Q passes one

and only one leaf. In general, the dimension of a leaf might be any integer

~ 0 and ~ n, but since we are assuming here that P is nondegenerate, the

dimension of a leaf must be z 1. Of course when the dimension of a leaf

is equal to n, its relevance to our results becomes nil.

We turn now to the case in which the submanifold M is neither

noncharacteristic nor totally characteristic.

Theorem 2 : : Let M be an analytic submanifold of 0 and suppose that there

is an analytic hypersurface S containing M, an odd integer and 

such that if

then the following is true

For all = the base projection of is not

tangent to M .

and of the tangent space to E at y -
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Then conclusions (a) and (b) of Theorem 1 are valid.

It should be noted that the hypothesis that A and B vanish on

¿ = means that the hypersurface S is characteristic along M.

Condition (1.9) implies that S is simply characteristic along M. Inciden-

tally (1.9) is automatically satisfied when M is a point and P is of princi-

pal type.

Condition (1.10) can be rephrased by saying that at every point
the restriction of B to the bicharacteristic of A through y vanishes

exactly of order k. Note that (1-11) is void when k= 1.

The hypothesis of Theorem 2 can also be expressed in terms of

two integers related to those introduced by Htlrmander in his study of

subellipticity [5]. Although this alternate form of the hypothesis is more

difficult to verify computationally, it has the advantage that it is

clearly invariant under multiplication of p m by a nonvanishing factor.

This fact is used in the proof of Theorem 2, in conjunction with the

implicit function theorem, to locally reduce pm to a first order symbol.
"0 

m

Let A and B be real valued C functions defined in a neighborhood

of a point T*Q. With the pair (A,B) we associate the integer

Thus, k = 0 means that (at y) A or B is / 0 while k = 1 means that A = B = 0

but HAB / 0. Rememberring that HAB is the Poisson bracket ~A,B~, we can

say, alternatively, that k is the largest integer for which all repeated

Poisson brackets of length k vanish at y.

For j E N , let V . be the span in T (T4’0) of all commutators
.i v

with 1~~ ~ j and Ci - A or B. If E is a smooth manifold in passing

through Y, let V . be the canonical image of V . in Now we

define a new integer related to y, ( A, B) and E
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If E is the single point y, then s. is the number s introduced

If E is or a hypersurface then s = k. If k~ 0, then Sz = 0
means that HA(Y) and H B (y) span a two dimensional vector space in 

transversal to T £ .
Y

The definitions of k and s are invariant under canonical trans-
formations (Z being replaced by its image under the canonical transforma-

tion). Moreover k and s¿: are also invariant under multiplication of the

2-vector (A,B) by a non singular 2 x 2 matrix of COO real functions. In parti-

cular, if A and B are the real and imaginary parts of the principal symbol

p , then k and &#x26;- remain invariant under multiplication of p m by a nonm m

vanishing complex-valued COO function.

Theorem 2’ stated below is equivalent to Theorem 2.

Theorem 2’ : Let M be an analytic submanifold of Q and suppose that

there is an analytic hypersurface S containing M such that

k is constant and odd on ¿ , ,

where k and s are defined by (1.12) and (1.13) with A = Rep and B = Im p .
E m m

Then conclusions (a) and (b) of Theorem 1 are valid.

The hypotheses of Theorems 2 and 2’ imply that the hypersurface

S is simply characteristic along M. However, S cannot be totally

characteristic, for then the bicharacteristic of A through any point
of E would be entirely contained in and B would vanish identically

on it, contadicting condition (1.10) . (Also, if S were totally characteris-

tic, then k=+oo on contradicting condition (1.15) ) . As a consequence,

we must have

For if codim M were equal to one, we would then have M = S and S would be

totally characteristic.

Actually in the top dimensional case (codim M= 2) we can show

that condition (1-11) in Theorem 2 and condition (1.16) in Theorem 2’ are

redundant. We have
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Theorem 
3 : If codim M = 2 in Theorem 2, th’en condition (1.11) can be

disregarded.

Theorem 3’ : If codim m = 2 in Theorem 2’, then condition (1.16) can be

disregarded.

In particul ar, when M is a point in R2 we have

Corollar 3 : Let 0 be an open set in R2 and P(x, D) be a differential

operator with analytic coefficients in O. Assume that there is E T~~O

satisfying

and, for some zE 0152, the restriction of Im (zpm) to the bicharacteristic of
m

Re(zp ) passing through changes sign. Then conclusions (a) and
m

(b) of Theorem 1 are valid with M= 

An obvious consequence of the above results is

Corollary 4 : Under the assumptions of any one of the above theorems or

corollaries, the operator P is not hypo-elliptic near any point of M.

Actually, corollary 4 is a particular case of Theorem II in

§ 2. OUTLINE OF THE PROOFS

In the proofs of all the results, the first and crucial step is

the determination of a complex phase function i. e. of a solution T of

the characteristic equation

in an open neighborhood V of x 0, such that

(i) 4J(x) = 0 if and only ifx6Mnv,

(ii) the values of 4J in 0152 avoid the negative imaginary half-axis,

and, when m &#x3E; I

(iii) grad 4J j o.

Such a phase function 4J is determined by solving an appropriate Cauchy

problem for (2.1). Assuming for the moment that T has been determined, the
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desired solutions of (0.1) are obtained in the form of asymptotic

expansions similar to those used in Mizohata [8J,

The functions E. are chosen to be holomorphic in the complex plane cut
J

along the negative imaginary half-axis and to satisfy

The analytic functions u. are obtained by successively solving a sequence
J

of Cauchy problems for first order equations with appropriately chosen

initial conditions so that the series (2.2) converges and satisfies (0.1).

For the construction of solutions which are flat on M we take

where 1/5 = z = 0  3n: and for solutionswhere z =r e 1f z=re with - S ’" and for solutions
. +1 

2 2

which are Cp and not Cp (where p is any integer 2 &#x3E;- m) we take

Let us turn now to the determination of the phase functions

having the desired properties. Here the first step is to factor the

principal symbol in the form

near a certain point in where q and X are analytic and homogeneous

in ~ of degree m-1 and 1 respectively and q/0. This is done using the

implicit function theorem and the assumption "simply characteristic". The

factoring (2.6) allows us to replace the characteristic equation (2.1) by
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The next step is to transfer the assumptions of the theorems from pm to

its first degree This requires showing that the

assumptions are invariant under multiplication of pm by a non vanishing
function. While this is obvious for Theorem 1 and easy to show for

Theorem 2’, it is accomplished for Theorem 2 by showing that the

assumptions of Theorems 2 and 2’ are equivalent. Next we express the

assumptions of the theorems in terms of properties of the function X.

For Theorem 1 we do this using the theory of first order (non linear)

equations while for Theorem 2 we first make an analytic change of variables

to locally straighten out the bicharacteristics The final

steps consist of assigning appropriate Cauchy data on suitable

hypersurfaces, solving the resulting Cauchy problems (using the Cauchy-

Kowalewsky theorem) and then showing that the solutions T have the desired

properties. For Theorem 2 the necessary estimates are found by refining

those obtained by Hdrmander [3J. (Ma point, k= 1) and by Nirenberg and

Treves [l0] (M a point, k&#x3E; 1 and under a condition more restrictive than

(1.11)).
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