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§ 1. INTRODUCTION

Let (1 
o 

be a domain in En with a smooth boundary ~y and let

G = ~’ = (0,X ) x ’Y , X &#x3E; 0. Consider the following
0 0 0 0

mixed problem in G

where A(x,D) is a strictly hyperbolic operator of the second order ,

x = (x 0 X,,...,xn) and x is the time variable.o 1 n 0

We shall make the following assumption :

Let r ( x) - 0 be the equation of r . If for x E I’ and 0 we have

then

where is the principal part of A(x,~) and

is the Poisson bracket. The assumption

(1.4) is equivalent to the condition that the boundary r is strictly

convex with respect to all null-bicharacteristics of A(x,D) which are

tangential to r. We shall describe the wave front set of u(x) assuming

that the wave front set of g(x’) is given. The propagation of

singularities for hyperbolic mixed problems was investigated by

Povzner and Sukharevskii [141, Lax and Nirenberg [13J, Chazarain [3],
Majda and Osher [11J, Taylor 15 in the case where there are no

singularities on the tangential bicharacteristics. Recently
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Friedlander [6], Taylor [16] and Melrose [12] consi.dered the

propagation of singularities for the exterior mixed problem for

hyperbolic equation of the second order in the complete form, in

particular, they admitted the singularities on the tangential
bicharacteristics. Their results were extended on the hyperbolic

equations of the higher order by the author [4]. The works C16~ , C12~ ,
[4] are a development of the earlier works of Ludwig C 9~ and Morawetz

and Ludwig [10]. We note that for the interior mixed problem with the
singularities on the tangential bicharacteristics only some partial
results were known (see [2]). Quite recently I have received an exposition
of the lecture given by Andersson and Melrose at this seminar [1] where

results closed to ours were obtained but their method is quite different.

Generalization : Everywhere below we shall consider a mixed problem
for the hyperbolic equation of the second order with the Dirichlet

condition on the boundary. Analogous results are valid also for

the following hyperbolic mixed problem of an arbitrary order :

where A(x,D) is a strictly hyperbolic operator of t he order 2m and

B.(xD) are differential operators of the order m .. It is supposed in
J J

addition to the condition (1.4) that

1) each component of the surface A ~ (x~) = 0 i s st ri c t ly c onv ex f o r x

and F0 fixed where A is the principal part of A( x, ~ ) .

2) For every point (x’,Ir’) E T*((r), F’ 0, the operators B.(x,D),..) 

... J
1 s; j s: m, fulfillthe Agmon condi t i on ( see )4J) ( whi ch i s cal l ed also

uniform Shapiro Loptinskii condition or Kreiss condition) in the

corresponding local system of coordinates. The changes in the proof
needed for the case of the problem (1-5), (1.6)~, (1.7) will be the

same as in ~4j.
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§ 2. STATEMENT OF RESULTS

Let T# (r ) be the cotangent space on r without the null-section.
o / B

We denote by N o c the image of the surface A (o) ( x, E ) - 0 ,
tA (x,E ),r(x)~ - 0 under the natural projection i~: T* (r)

and by N c T# (r ) the image of the set A (o) (x, ) = 0 , 
0 0

 B 
+ o 

..(A (o) + ),I’(x)l 0 0 under the projection i .
We shall call outgoing bicharacteristic a null-bicharacteri

tic x~x(t), ~=~(1) of the operator A (o) (x,D) for which the time

x = x (t) increases when the parameter t increases. Let 11 (x’ , e: ’ ) = 0
o O -

be the equation of the surface N . We shall call outgoing limiting
o

bicharacteristic an outgoing null-bicharacteristic of the operator

We shall define the following transformation P : N+ - N+ .
+ +

Let (y’, T1 ,) E N+ . Then the image ( x’ , ’ ) of (yl,1) under the
transformation (P will be the endpoint of the outgoing null-

bicharacteristic of which begins at the point ’ where

I*q = q ’ I and which touchs the boundary once more at the point (x’ ,~ )
where i*~ = ~’ . We make the nonessential assumption that the transformat

is defined on the whole N . It may be shown that T is a canonical
+

transformation.

Theorem 2.1 : : The wave front set of , where a is the
201320132013201320132013201320132013 an r on r a n

normal derivative, is contained in the following set

where tp (k) is k - th power of tp and M o c N 0 is the union of alloo

outgoing limiting bicharacteristics which begin at WF(g) n N .
o

We note that the propagation of singularities inside the domai

G can be obtained from the Theorem 2.1 by using the Green formula, whic

gives expression for u(x) through ui = , 1 1 and outgoing fundamer bn g g

tal solution of hyperbolic equation (1.1). We don’t use this way becaus

the propagation of singularities inside G will be obtained as co-produc

of the proof of the Theorem 2.1 : :
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Theorem 2.2 : The wave front set WF(u) of u(x) inside G is contained

in the union of all broken bicharacteristics which begin in

n N+).
We call broken bicharacteristic in G the union of an

outgoing bicharacteristic and of all its multiple reflections at the

boundary. The following lemma explains the name of limiting bicharacteris-

tic :

Lemma 2.1 : t Let E N be a limiting point of the sequence
o 0 0

E N+ when Let T be the broken bicharacteristic of the 
,m m B m

operator A(0) x D which begins at the oint x’ where i# = Ff . .p ( ’ ) g p ( 
m m ~m m

Then the limit of the set ’~m will be the outgoing limiting bicharacteris-
tic ’Y which begins at the point (x’,F ’) E N .

0 0 0 0

Because of the local nature of the problem it is sufficient to

consider the case when Q is the half -space IR+ n = 
xit ( x , ... , x ) E En-1, U c 

91 n-1 o n o

, = ( , ") E E c where U is a small neighbourhood of
0 0 0 0

some point x(o) Ix"0) and E is a small conic neighbourhood of some pointconic neighbourhood of some point
(0 ) n 

0 0) ( 0where E N .
0. 0 0 0’ 0 ’ 0 

°

0 

The principal part A eo) (x,t) of the operator A(x,D) can be

written for x E U0, ’ 6 E in the following form
oo

where X(x~’) and ~(x~~’) are real.

The surface No is the surface ~(x’~0~’) = 0 and N+ is the

set (x’,S’) where &#x3E; 0. We note that N 
0 

is a smooth surface
. / B ... 

o

since A (x) is hyperbolic with respect to 90 and that the
assumption (1.4) has the form

To prove the theorems 2.1 and 2.2 we shall construct a parametrix of

the problem (1.1), (1.2), (1.3), i.e. such function uo = R(g) which
solves (1.1), (1.2), (1.3) modulo C co functions and which will be given
more ou less explicitly. It may be shown that for this purpose it is

sufficient to find in the half-space 0 a function u.= R(g) with
the following properties :
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We suppose that g(x’) = 0 for x  0 and that the wave. front set of

g(x’) is contained in a small neighbourhood of (X (0), X 11,~ (o) , t ll) E N
0 0 0 0 0

Now the problem of propagation of singularities reduces to the

description of the singularities of R(g) .

§ 3. AN EXAMPLE

To clarify the situation we shall consider at first the

following boundary problem in the half-space =((x’x ) x 
+ n n

where g(x’) = 0 for x  0, WF(g) is contained in some neighbourhood

particular case of when ’ 
I

We note that the problem ( 3.1 ) , ( 3. 2 ) , (3.3) is similar to the

problem considered by Friedlander but it differs by the sign of x 
n

(in the case corresponding to the exterior mixed problem was

treated). In this case the surface N o will be the surface § o - 0, the

set N + will be given by the inequality t 0- 0 and M o wiii be the union
of all rays (xo+ t,x",0,~"), ~ t z 0 where E WF(g). We

shall denote the sets N , N , M for the case of the operator
n A ,1 0 + 0 

a(x ,D) by N , N , M .
n 

D) by 
o + o 

t,By performing the Fourier transform u ’ x ) = f y p g ( 
n J ( 

n

with respect to x’ = (x 0 X") we shall obtain an ordinary differential
equation
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which can be reduced

to the Airy equation. The only solution of the problem (3.1), (3.2),

(3.3) is given by the formula

where by A o (z) we denote the Airy function which has the following
asymptotics for t real :

We have taken T &#x3E; 0 in (3.4) to avoid the zeros of on the

real axis. The integral (3.4) does not depend on T because of the

Paley-Wiener theorem.

Denote by A(z) the Airy function with the following asymptotics
for t~ real :

It can be shown Ap(z) = A(z) - Ai ( z )
where AI(z) = A(z) .

We shall use the following estimate for the Airy functions .
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Proposition 3.1 : : Let

Then for and large we have

2

Proof : For the estimate (3.9) follows from the
2013201320132013 

2

asymptotics of A1(S) and A(~). Now let 0 5 a~~"~3  C. Then

because A1(t) = A(t) for the real t. But w(t) = Ai(t)A(t) - A’(t)A1(t)
is the wronskian of the Airy equation and so it is a constant

Thus it follows from the Taylor formula that

Now we shall describe the wave front set of

we obtain

where F-1 is the inverse Fourier transform,
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for 1 and 0  )( (t) 1 for all t. We shall denote by X1(t) theco 0 1
C function equal to 1 - X 0(t) for t &#x3E; 0 and equal to zero for 0.

By X-1 (t) we denote the COO function equal to I - x o (t) - 

Let e&#x3E;0 and small. We have

At first we shall find the wave front set of v (x*). We have

where 

Let

It follows from (3.9) that

The equality (3.13) can be written in the following form

where bw 1 = K W 1 is a Fourier 
3 
integral operator with the phase

function T(x A 1 9 1 ) = ( xi 9 1 ) - 4 2 It,, I funct ion tp x I , 0160 I) = (xl, S; I) - "30: Is" I .
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A A

The canonical transformation T generated by the phase function (x’,§’)

has the following form for a E supp X2 ((x It , 1 6)

A

It is easy to verify that the canonical transformation (ct.)O coincide

with the defined in the section 2.

Lemma 3.1 : There is the following inclusion

We shall make the following general remark before we begin the proof of

the lemma 3.1.

Remark 3.1 : Let S c a conic domain which is invariant under
20132013201320132013201320132013 o

the for a E for each point (xl,tl) 0 0 E S,

there exists a C -function with support in S and

homogeneous in ’ of order zero such that &#x3E; 0 and
, 

o 0

fi( X’ ,§ ’ ) is monotonic with respect to the c.t. T-1, for

a E i. e. $-1 (x’,~’) = (y’,~’) 
Then w1 E COO microlocally in S if g1 E COO microlocally in S. To

prove the remark 3.1 we multiply the equation (3.15) by P(x’,D’). Then

we obtain Pb = = (YI,71) = (P ^-l (x I
and b1 is an operator of a lower order. Now taking the scalar product

of the equation Pw 1 - Pbw1 = where A 2s is the pseudo-
differential operator (T d 0) with the symbol (1 + Is’12)s, and using
the sharp Garding inequality we shall obtain an estimate for jjPgJ) e

s-OZ
through lipg-ilis modulo lower order norm of wi. Therefore we can obtain that

microlocally in S because we can repeat such estimates many times. /w1E cro
As a simple consequence of the remark 3.1 we note that the half-

space x  0 is an invariant domain in the c.t.~-1 so
o 0

that w1 E C for x  0 because g1 E C for x  0. Now we are able to

prove the lemma 3.1. Let (xB) E N and (x (o) It (o) ) 0 M0. Then the
o o
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does not belong to

WF(g1). Let So be a domain given by the inequalities

for 0 :!r. x  x ~°~+ b and (x",91) are arbitrajyfor x  0. If b is small
_ 

0 0 

~ 

0

then S D WF(g ) _ . It follows from (3.16) that S is invariant
under the q . t . _1 for a E SUpp X2 ( " ’ § " ’ It I S aSY t ° C°SCunder the for a E supp X2(a" ). It is easy to construct
a family of functions P(xl,tl) with support in So and monotonic with

respect to P~1, such that &#x3E; 0. Then the remark 3.1 gives

that (x (o) (o) thus we have proved (3.17).
Lemma 3.2 . The set ’WF(w n N is contained in U N +

p=o

N

Proof : If we apply the operator E bp to (3.15) we shall obtain
~ 

p= o

Thus

Since N is arbitrary we have

We shall show now that the intersection of
A

with N+ is empty.

be arbitrary and let

It follows from (3.16) that

microlocally in the neighbourhood
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is an usual "If d 0 and

is a Fourier integral operator with the same phase
n

function (x’,S,) as the operator b. So that

Now we shall find the wave front set of v (x’).
’ o

Proposition 3.1 : If g1 E C for xo  to then

This proposition is a consequence of the analyticity of

Proposition 3.2 : The following estimates are valid

for a E supp x 

The proposition 3.2 follows from the estimate (3.9) and from an obvious

estimate

when lal I

The proposition 3.2 permits the localization with respect to

x" because the commutators of Td o with the symbol

and with the will be of a

lower order. Now the combination of the propositions 3.1 and 3.2 gives

possibility to establish the following lemma. 

Lemma 3.3 : The wave front set ofv (x’) is contained in Mo :20132013201320132013201320132013 o o
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We note that WF(v ) c WF(g1),

is with a symbol

belonging to the class S1 
o 

(see [8]) on WF(gI).
.t 0

Therefore, for the problem (3.1), (3.2), (3.3) the theorem 2.1

follows from (3.11), (3.21), (3.23) and (3.24), i.e.

n

We note that if WF(g) f1 N 0 is contained in the closure of

it follows from the lemma 2.1 that

Remark 3.2 :

let Yo be the limiting outgoing bicharacteristic

t z 0 which begins at this point. We assume that g(X’) E 

microlocally only for t &#x3E; 0. The interesting question is:when for

t &#x3E; 0 the bicharacteristic ’Y 
o 

is contained in 
o ax n. n

We shall consider two examples :.

1) Denote where p. is real, b &#x3E; 0 is small and

xo(t) is the same function as above. Let 11 k’ 1:9 k , be the zeros

of the Airy function A (z) . We shall take p / 11 k’ 1 k  00, and 6 &#x3E; 0

such that )

where 6(x’) is the 6-function. It is obvious that :

where is arbitrary. Since the symbol
0

belongs to the class we have

WF(g) so that does not contain for t &#x3E; 0

the limiting bicharacteristic which begins at the point (0,0,~11).
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2) Now let where ,k is one of the zeros of A (z) and let 6 &#x3E; 0
o 

be such that there is no others zeros of A (z) on the supp (’).
I I I - 0

where Ck is a constant and

belongs to the class

It is easy to verify that the

wave front set of is equal ?0,0) where 0 and
" 

o 
" 

0

~ " ~ 0 are arbitrary, i.e. . This shows that for 11 = 11k

§ 4. THE GENERAL CASE

Now we shall carry out the same program as in the section 3 to

construct and investigate the parametrix u = R(g), which satisfies
(2.4), (2.5), (2.6).

4.1 Construction of the phase function

Consider the eikonal equation

For the operator a(x n D) there exist 
c 

two solutions of the eikonal

equation a(x,4» = ~ in the region ° - x &#x3E; 0: 4&#x3E; = (x’~’) ~q ( 
n x g 

fs"l x n + 
( x ~ ~ )

and both have singularity on the caustic
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The similar theorem holds in the general case (see e.g. r4] section 2) :

be some small neighbourhood

be some small neighbourhood of

Then for there exist real

COO-functions 6(x~’)~ p(x,5’) homogeneous

solution of the equation (4.1) Moreover

where i and 0(E°) means 0(aN) for arbitrary N.

4.2 Parametrix for the homogeneous equation in the half-s ace
Now following Ludwig [91 (see also [4] section 3) we shall use

the phase function to construct the asymptotic solution of the

equation A(x, D)u = 0 in the region 0, 0, x E Uo . We shall
n 0

choose an asymptotic solution in the following form

can be found in the region p &#x3E; 0 by successive solution of

the transport equation (see ~,4~ section 3 and 4J and it is possible
- 

+

to choose the initial data for ak in such a way that
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We take CCD continuation of gx , t ’ &#x3E; and h x , F ’ &#x3E; , o  k CD on the

region p 0, x E U and then we take almost analytic continuation
o g

of o (x, § ’ ) , gk(x,S’), with respect to .

" " I
We shall denote the almost analytic continuation of some function f

by ~. Thus

where the sequence (N kl is increased sufficiently fast .

It can be shown that

we shall choose an asymptotic solution in the

following form (see (4), section 5) : .

where

and
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where is arbitrary and  ~, can be found

succesively by simple formulas (see [41, section 5). We note that

p,(x’,0,e~(x~0~))  0 for a, 0 and we take

where

We shall look for a parametrix of the equation A(x, D)u = 0

for 0 in the following form

where

It is not difficult to see that

4.3 Solution of the equation on the boundary

We shall choose v(x’) such that

We assume that g(x’) = 0 for xo  0 and that the wave front set of
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g(x’ ) is contained in a small neighbourhood of (x ’,,§ I ) E N . Denote
" 

T T 000

Then p1 E C 00 for ~’~ 0. It follows from (4.10), (4.11), (4.12) and from

the asymptotic properties of the Airy functions that

where ~ is the Fourier integral operator with the phase function

,po(x",) = O(x,,o,c,) - and with the symbol 
0 1 1 ,

Also ;1 is the Fourier integral operator with the phase function

and with the symbol

We note that on the support of the symbol of $.?F- 

9(o) (xl,§,) - 9(1) (xl g I ) = 0(a) and §0is an elliptic Fourier
integral operator .

Thus there exists a Fourier integral operator R 0 such that

Therefore if we apply Ro to the equation

we shall obtain
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where B = -R/~~1 is also a Fourier integral operator. It can be

shown by the stationary phase method

where

and

Now by using the sharp Gärding inequality we can prove the following

lemma :

Lemma 4.1 : : Let

solution of the equation

Then the following estimate holds

If we apply the same arguments to the conjugate equation p - B*p = q
then we can obtain the existence theorem for the equation (4.21) : for

ever &#x3E;, E H s 4 ( R4) there,exists the solution v E (En) of the
s+4 4

equation (4.21) and the estimate (4.22) holds.

We note that the equation (4.17) is very similar to the

equation (3.15). The phase function generated the c.t.
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which is closed to the c.t. (3.16) since p2 = . So that the

remark 3.1 can be also applied to the equation (4.1’7) and a proof

similar to the proof of lemmas 3.1, 3.2 gives that

Let T0 and T1 be the c.t. generated by the phase and

We note that is defined for a E It may

-1 
) 1 1 ̂

b e shown t hat 2 = P 0 1 1’ WF ( R g ) c P o 1 WF ( g ) and = 

where No, N+, m0, T are the same as
o+o

in the section 2. Thus

Now we can prove the Theorem 2.1. We have

It follows from (4.10), (4.11), (4.12) that

where t3 and ~4 are the Fourier integral operators with the phase
and and xi is the Wd O With the symbol

° So that
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We note that T0 = for a = 0. Now

where $ ? 6 are Fourier integral operators with the phase function5 6 

We note that

on the so that 0(a )

Now the proof similar to the proof of the lemma 3.3 gives

So that

Therefore the theorem 2.1 follows from (4.27), (4.29) and (4.31).
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