Séminaire Équations aux dérivées partielles - École Polytechnique

R. TEMAM
 On the Euler equations of incompressible perfect fluids

Séminaire Équations aux dérivées partielles (Polytechnique) (1974-1975), exp. no 10, p. 1-14
<http://www.numdam.org/item?id=SEDP_1974-1975 \qquad A9_0>

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CENTRE DE MATHEMATIOIES
17, rue Descar-tes
5230 Paris Cedex 05
 $1974-1975$

ON THE EULER EQUATIONS OF INCOMPRESSIBLE PERFECT FLUIDS

R. TEMAM

on the euler equations of incompressible perfect fluids

Roger TEMAM

Let Ω be a bounded domain of R^{3} with smooth boundary Γ. The motion of an incompressible perfect fluid filling Ω is governed by the Euler equations

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\sum_{j=1}^{3} u_{j} \frac{\partial u}{\partial x_{j}}+\operatorname{grad} \pi=f \text { in } \Omega \times(0, T) \tag{0.1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{div} u=0 \text { in } \Omega \times(0, T) \tag{0.2}
\end{equation*}
$$

$$
\begin{equation*}
u . n=0 \text { on } \Gamma \times(0, T) \tag{0.3}
\end{equation*}
$$

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \text { in } \Omega, \tag{0.4}
\end{equation*}
$$

where $f=f(x, t), u_{0}=u_{0}(x)$ are given, $u(x, t)=u=\left(u_{1}, u_{2}, u_{3}\right)$ and $\pi=\pi(x, t)$ are the unknowns, the velocity vector and the prassure ; n is the unit outward normal on Γ.

The problem of existence and uniqueness of solutions of the Euler equations has been considered by several authors and most recently ty T. Kato [4], [5], D. Ebir and J. Marsden [3], J.P. Bourguignon and H. Brezis [2]. In [4] T. Kalo proves the existence of a global solution in the two dimensional case and in [5] the existence of a local solution in the three dimensional case, for $\Omega=\mathbb{R}^{3}$. The existence of a local solution in the general case, i.e. Ω a domain of R^{3} with a boundary, was then proved by D. Ebin and J. Marsden [3] using technics of Riemanian Geometry on infinite dimersional manifolds, and by J.P. Bourguignon and H. Brezis [2] who give an alternate proof of the local existence, more analytical but relying still on georetrical technics.

Our purpose here is to give a new short proof of this result, using a new local a par. estinate and standad technics in partial differential equations. Our prow is essentially an extension of that of T. Kato [5] to bounded domain, vith a suthle treatment of the boundary terms wich do not appear in [5].

1. A priori estimates of the solutions of the Euler Equations.
2. The existence and uniqueness rewnt.
3. A PRIORI ESTIMATE OF THE SOLUTTONS OF THE EULER EQUATIONS.
1.1. Notations.

We will use classical notations and results concerning the Sobolev spaces: $W^{s, p}(\Omega)$, s integer, $1 \leqslant p^{<\infty}$, is the Sobolev spaces of real valued L^{p} functions on Ω, such that all their derivatives up to order s belong to $L^{p}(\Omega)$. If $p=2$, we write $H^{s}(\Omega)=W^{s, 2}(\Omega)$.

We write $(f, g),|f|$, the scalat product and the norm in $L^{2}(\Omega),((f, g))_{m}$ and $\|f\|_{\mathrm{m}}$, the scalar product and the norm in $H^{m}(\Omega)$,

$$
((\mathrm{f}, \mathrm{~g}))_{\mathrm{m}}=\sum_{|\alpha| \leqslant \mathrm{m}}\left(0^{\alpha} \mathrm{f}, \mathrm{D}^{\alpha} \mathrm{g}\right)
$$

where D^{α} is a multi-index derivation, $\alpha=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. The norm in $L^{p}(\Omega)$ is denoted $|f|_{p}$ and $\|f\|_{m, p}$ denotes that of $v^{m}, p(\Omega)$. The same notations will be used also for the norms and scalar products in $L^{2}(\Omega)^{3}, H^{m}(\Omega)^{3}, \ldots$.

We assume that the boundary of S_{6} is a two dimensional manifold of class \mathbb{C}^{r} with r sufficently large so that the usual embedding theorems hold. In particular : $\mathrm{w}^{\mathrm{m}, \mathrm{p}}(\Omega) \subset \mathrm{L}^{\mathrm{r}}(\Omega)$ where $\frac{1}{r}=\frac{1}{\mathrm{p}}-\frac{\mathrm{m}}{3}$ if $\mathrm{m}<\frac{3}{\mathrm{p}}, \quad 1 \leqslant r^{<\infty}$ is arbitrary if $\mathrm{m}=\frac{3}{\mathrm{p}}$, $r=\infty$ if $m>\frac{3}{p}$ (in this case $V^{m, p}(\Omega)$ is even a space of Hölderian functions).

We recall also that if $m>\frac{3}{\mathrm{~F}}$, (and Ω is smooth), $W^{m, p}(\Omega)$ is an algebra for the pointwise multiplication of functions (see [2], [3]).

Let

$$
\begin{aligned}
& x_{m}=\left\{v \in H^{m}(\Omega)^{3}, \text { divv, } 0, v, a=0 \text { on } r\right\} \\
& X_{m, p}=\left\{v \in W^{m}, F(s i)^{3}, \text { divv } v=0, v, n=0 \text { on } r\right\} .
\end{aligned}
$$

 projertion in $L^{2}(\Omega)^{3}$ on x_{0}. fersil that p is also a linear continuous operar:
from $W^{m, p}(\Omega)^{3}$ into itself ($m \geqslant 1$). Indeed if $v \in W^{m, p}(\Omega:)^{3}$, then ($\left.I-P\right) v=\operatorname{grad} \pi$, where π is solution of the Neuman problem
(1.1) $\left\{\begin{aligned} \Delta \pi=\operatorname{div} v & \left(\in W^{m-1, p}(\Omega)\right) \\ \frac{\partial \pi}{\partial n} & =v . i \quad \\ & \left(\epsilon W^{m-\frac{1}{p}, p}(\Gamma)\right)\end{aligned}\right.$
and $\pi \in W^{m, p}(\Omega)$ by the classical results of regularity for the Neuman problem (Agnon Douglis Nirenberg [1]).
1.2. Represen:ation of π as anctional of u.
. We will now assume that u and π are solutions of (0.1)-(0.4) and we will establish an energy inequality satisfind by u. We assume at present that u and π are classical solutions of (0.1), (0.4) as smooth as necessary for the subsequent calculations to make sense.

The following result will be usefull
Lemma 1.1. If u and π satisfy (0.1)-(0.3), then
(1.2) $\quad \Delta \pi=\operatorname{div} \mathrm{f}-\sum_{\mathrm{i}, \mathrm{j}} \mathrm{D}_{\mathrm{j}} \mathrm{u}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}{ }^{\mathrm{u}}{ }_{j}$, in Ω
(1.3) $\quad \frac{\partial \pi}{\partial n}=f . n+\sum_{i, j} u_{i} u_{j} \phi_{i j}$ on Γ,
the functions $\phi_{i j}$ depending only on $I, D_{i}=\frac{\partial}{\partial x_{i}}, n=\left\{n_{1}, n_{2}, n_{3}\right\}$.
Proof. We get (1.2) by applying the divergence operator on both sides of (0.1). Taking then the scalar product of each side of (0.1) with n, we get on Γ :
(1.4) $\quad \frac{\partial \pi}{\partial n}=f . n-\sum_{i, j} u_{i}\left(D_{i} u_{j}\right) n_{j}$.

Since r is a smooth manifold, we can locally represent it by an equation

$$
\phi(x)=0,
$$

and on the corresponding part of $r\left(s a y \quad \Gamma_{o}\right)$,

$$
n(x)=\frac{\operatorname{grad} \phi(x)}{|\operatorname{grad} \phi(x)|}
$$

(ϕ is a smooth function in some neighborhood Ω_{0} of Γ_{0}).
Then

$$
|\operatorname{grad} \phi(x)| u_{i}(x)\left(D_{i} u_{j}(x)\right) \cdot n_{j}(x)=u_{i}(x)\left(D_{i} u_{j}(x)\right) D_{j} \phi(x)
$$

Since

$$
u(x) \cdot n(x)=0 \text { on } \Gamma \text {, }
$$

we have

$$
u(x) \cdot \operatorname{grad} \phi(x)=0
$$

when $\phi(x)=0$ and the gradients of these two functions are therefore parallel on Γ_{0} :

$$
\begin{gathered}
D_{i}(u \cdot g r a d \phi)=k D_{i} \phi \text { on } r_{o} \cdot \\
\sum_{j=1}^{3} D_{i} u_{j} \cdot D_{j} \phi=-\sum_{j=1}^{3} u_{j} \cdot D_{i j} \phi+k D_{i} \phi
\end{gathered}
$$

Whence with (0.3)

$$
\sum_{i, j=1}^{3} u_{i} \cdot D_{i} u_{j} \cdot D_{j} \phi=-\sum_{i, j=1}^{3} u_{i} \cdot u_{j} \cdot D_{i j} \phi
$$

and (1.3) follows with

$$
\begin{equation*}
\phi_{i j}(x)=\frac{D_{i j} \phi(x)}{|\operatorname{grad} \phi(x)|} \tag{1.5}
\end{equation*}
$$

1.3. Quadratic estimation of π in term of u.

Lemma 1.2. If u and π satisfies (0.1)-(0.3) then for each $t>0$, for $m \frac{5}{2}$,

$$
\begin{equation*}
\|\operatorname{grad} \pi(t)\|_{m} \leqslant c_{1}\left\{\|f(t)\|_{m}+\|u(t)\|_{m}^{2}\right\} \tag{1,6}
\end{equation*}
$$

and for $m>1+\frac{3}{p}$,

$$
\begin{equation*}
\|\operatorname{srad} \pi(t)\|_{m, p} \leqslant c_{2}\left\{\|f(t)\|_{m, p}+\|u(t)\|_{m, p}^{2}\right\} \tag{1.7}
\end{equation*}
$$

the constant c_{1} depending only m and Ω, c_{2} depending on P, m and Ω.

X. 5

Proof. We infer from (1.2), (1.3) and [1] that

$$
\|\operatorname{grad} \pi\|_{m, p} \leqslant c_{o}\left(\left\|\operatorname{div} f-\sum_{i, j} D_{j} u_{i} \cdot D_{i} u_{j}\right\|_{m-1, p}+\left\|f \cdot n+\sum_{i, j} u_{i} u_{j} \phi_{i j}\right\|_{W}-\frac{1}{p}, p{ }_{(\Gamma)}\right\}
$$

By the triangle inequality and obvious majorations for f, it remains to estimate

$$
\left\|\sum_{i, j} D_{j} u_{i} \cdot D_{i} u_{j}\right\|_{m-1, p} \quad \text { and } \quad\left\|\sum_{i, j} u_{i} u_{j} \cdot \phi_{i j}\right\|_{W}^{m-\frac{1}{p}, p_{(\Gamma)}}
$$

Since $m>1+\frac{3}{p}, W^{m-1 ; p}(\Omega) \quad$ is an algebra and

$$
\left\|D_{j} u_{i} \cdot D_{i} u_{j}\right\|_{m-1, p} \leqslant c_{3} \quad\left\|D_{j} u_{i}\right\|_{m-1, p}\left\|D_{i} u_{j}\right\|_{m-1, p}
$$

(c_{0}, c_{3} depend on m, p and Ω).
For the boundary term we write

$$
\left\|\sum_{i, j} u_{i} u_{j} \phi_{i j}\right\|\left\|_{W}^{m-\frac{1}{p}, p} \leqslant(\Gamma) \leqslant c_{i}\right\| \sum_{i, j} u_{i} u_{j}\| \|_{W}^{m-\frac{1}{p}, p}(\Gamma)
$$

where c_{4} depends only on m, p, and the $\phi_{i j}$ i.e. Γ. Observing that $m-\frac{1}{p}>\frac{2}{p}$, we see that $V^{m-\frac{1}{p}, p}(r)$ is an algebra and hence

$$
\begin{aligned}
\left\|\sum_{i, j} u_{i} u_{j}\right\|_{W}-\frac{1}{p}, p_{(\Gamma)} & \leqslant c_{5}\left\|u_{\mid \Gamma}\right\|_{W}^{2}-\frac{1}{p}, p_{(\Gamma)^{3}} \\
& \leqslant \text { (by the trace theorems) } \\
& \leqslant c_{6}\|u\|_{W}^{r}, p_{(\Omega)^{3}}^{2}
\end{aligned}
$$

1.4 A priori estimate for $p=2$.

Let α be a multi index, $|\alpha| \leqslant m$. We apply the operator D^{α} on each side of (0.1). We then multiply by $D^{\alpha_{u}}$, integrate over Ω and add these equalities for $|\alpha| \leqslant m$. We obtain

$$
\frac{1}{2}\left(\frac{d}{d t}\right)\|u\|_{m}^{2}=-\sum_{j=1}^{3}\left(\left(u_{j} \frac{\partial u}{\partial x_{j}}, u\right)\right)_{m}-((g r a d \pi, u))_{m}+((f, u))_{m}
$$

The first term on the right can be majorized using T. Nato [4] \{(2.2) p.298 $\left.{ }^{(1)}\right\}$ and we find

$$
\left|\sum_{j=1}^{3}\left(\left(u_{j} \frac{\partial u}{\partial x_{j}}, u\right)\right)_{m}\right| \leqslant c \cdot\|u\|_{m}^{3}
$$

where c^{\prime} depends only on m.
For the other terms, we clearly have

$$
((f, u))_{m} \leqslant\|f\|_{m}\|u\|_{m},
$$

$-((\operatorname{grad} \pi, u))_{m} \leqslant\|\operatorname{grad} \pi\|_{m}\|u\|_{m}$
\leqslant (by Lemma 1.2)

$$
\leqslant c_{1}\left\{\|f\|_{m}+\|u\|_{m}^{2}\right\}\|u\|_{m}
$$

Whence

$$
\frac{1}{2}\left(\frac{d}{d t}\right)\|u\|_{m}^{2!} \leqslant c_{1}^{\prime}\|u\|_{m}^{3}+c_{2}^{\prime}\|f\|_{m}\|u\|_{m}
$$

$c_{1}^{\prime}=c^{\prime}+c_{1}, c_{2}^{\prime}=1+c_{1}$,

$$
\begin{equation*}
\left(\frac{d}{d t}\right)\|u\|_{m} \leqslant c_{1}^{\prime}\|u\|_{m}^{2}+c_{2}^{\prime}\|f\|_{m} \tag{1.8}
\end{equation*}
$$

so that

$$
\begin{equation*}
\|u(t)\|_{m} \leqslant y(t), \quad 0<t<T_{0}, \tag{1.9}
\end{equation*}
$$

where y is the solution of the differential equation

$$
\left\{\begin{array}{l}
\frac{d y(t)}{d t}=c_{1}^{\prime} y(t)^{2}+c_{2}^{\prime}\|f(t)\|_{m} \tag{1.10}\\
y(0)=\left\|u_{0}\right\|_{m}
\end{array}\right.
$$

and $\left(0, T_{0}\right), 0<T_{0} \leqslant+\infty$, is the interval of existence of $y ; T_{0}$ depends only on c_{1}^{\prime} c_{2}^{\prime}, and the H^{m}-norms of the datas f, u_{0}.
(${ }^{1}$) See (1.12) below giving a more general result using L^{p} norms, $p \neq 2$.

In conclusion if Ω is a smooth bounded domain, if u and π are smooth solutions of (0.1)-(0.4) and $m>\frac{5}{2}$, then the estimate (1.9) holds.
1.5. A priori estimate for $p \neq 2$.

We rapidly establish an estimate similar to (1.9), involving the norms in $W^{m, p}(\Omega), m>1+\frac{3}{p}$.

We apply the operator D^{α} on each side of (0.1), we multiply by $\left|D^{\alpha} u\right|^{p-2} D^{\alpha} u$, integrate over Ω and add these equalities for $|\alpha| \leqslant m$. This leads to
(1.11) $\frac{1}{p}\left(\frac{d}{d t}\right)\|u\|_{m, p}^{p}=-\sum_{|\alpha| \leqslant m}\left(D^{\alpha}(\psi+\operatorname{grad} \pi-f),\left|D^{\alpha} u\right|^{p-2} D^{\alpha} u\right)$, where $\psi=\sum_{j} u_{j} \frac{\partial u}{\partial x_{j}}$. We prove hereafter that
(1.12)

$$
\left|\sum_{|\alpha| \leqslant m}\left(D^{\alpha} \psi,\left|D^{\alpha} u\right|^{p-2} D^{\alpha} u\right)\right| \leqslant c_{7}\|u\|_{m, p}^{3} .
$$

From (1.7) and Holder inequality we see then that the right hand side-of (1.11) is less than

$$
c_{7}\|u\|_{m, p}^{3}+c_{2}\left\{\|f\|_{m, p}+\|u\|_{m, p}^{2}\right\}\|u\|_{m, p}+\|f\|_{m, p}\|u\|_{m, p}
$$

Whence
(1.13)

$$
\frac{d}{d t}\|u\|_{m, p} \leqslant c_{3}^{\prime}\|u\|_{m, p}^{2}+c_{4}^{\prime}\|f\|_{m, p}
$$

with

$$
c_{3}^{\prime}=c_{2}+c_{7}, \quad c_{4}^{\prime}=1+c_{2} .
$$

We conclude from (1.11) that

$$
\begin{equation*}
\|u(t)\|_{m, p} \leqslant z(t), \quad 0<t<T_{1}, \tag{1.14}
\end{equation*}
$$

where z is the solution of

$$
\left\{\begin{array}{l}
\frac{d z}{d t}(t) \leqslant c_{3}^{\prime} z(t)^{2}+c_{4}^{\prime}\|f(t)\|_{m, p} \tag{1.15}\\
z(0)=\left\|u_{0}\right\|_{m, p}
\end{array}\right.
$$

and $\left(0, T_{1}\right)$ is the interval of existence of z.
There remains to establish (1.12).
Proof of (1.12). Application of the Leibnitz rule gives

$$
\begin{equation*}
D^{\alpha} \psi=(u \cdot g r a d) D_{u}^{\alpha}+\sum_{\alpha<\beta \leqslant \alpha} c_{\alpha, \beta}\left(D^{\beta} u \cdot g r a d\right) \cdot D^{\alpha-\beta} u \tag{1.16}
\end{equation*}
$$

Because of (0.2), (0.3), the contribution of the first term of (1.16) is zero, for each α. The contribution of the subsequent terms is less than

$$
\sum_{0<\beta \leqslant \alpha}\left|c_{\alpha, \beta}\right|\left|\left(D^{\beta} u \cdot g r a d\right) D^{\alpha-\beta} u\right|_{p}\left|D^{\alpha} u\right|_{p}
$$

In order to prove (1.12) it is then sufficient to show that

$$
\begin{equation*}
\left|\left(D^{\beta} u_{i}\right)\left(D_{i} D^{\alpha-\beta} u_{j}\right)\right|_{p} \leqslant c\|u\|_{m, p}^{2}, \tag{1.17}
\end{equation*}
$$

for each $i, j, \alpha, \beta, \quad 1 \leqslant i, j \leqslant 3, \quad 1 \leqslant|\alpha| \leqslant m, \quad 0<\beta \leqslant \alpha$.
Let us show (1.17). We set $g=D^{\beta} u_{i}, h=D_{i} D^{\alpha-\beta} u_{j}$ and we observe that

$$
\begin{array}{r}
g \in W^{m-|\beta|, p}(\Omega) \subset L^{\rho}(\Omega), \\
h \in W^{m-|\alpha|+|\beta|-1}(\Omega) \subset L^{\sigma}(\Omega), \\
|g|_{p} \leqslant c|g|_{m-|\beta|, p} \leqslant c\|u\|_{m, p}, \\
|h|_{\sigma} \leqslant c|h|_{m-|\alpha|+|\beta|-1} \leqslant c\|u\|_{m, p},
\end{array}
$$

for the values of ρ and σ given by Sobolev inclusion theorems $(m-|\beta| \geqslant 0$, $m-|\alpha|+|\beta|-1 \geqslant 0$ as $|\alpha| \geqslant|\beta| \geqslant 1$). If ρ or σ is infinite then we just vrite

$$
|g h|_{p} \leqslant|g|_{\infty}|h|_{p} \leqslant c|g|_{m-|\beta|, p}|h|_{p} \leqslant c\|u\|_{m, p}^{2}
$$

or

$$
|g h|_{p} \leqslant|g|_{p}|h|_{\infty} \leqslant c|g|_{p}|h|_{m-|\alpha|+|\beta|-1} \leqslant c \mid u u \|_{m, p}^{2} .
$$

If $|\beta|=m-\frac{3}{p}, \rho \geqslant 1$ is arbitrary, but in this case
$m-|\alpha|+|\beta|-1=2 m-|\alpha|-\frac{3}{p}-1 \geqslant \frac{m-3}{p}-1>0$ by assumption. Hence $\sigma>p \geqslant 1$ and setting $\rho=\frac{\sigma}{\sigma-1}$, we write

$$
|g h|_{p} \leqslant|g|_{\rho}|h|_{\sigma} \leqslant c \quad\|u\|_{\pi, p}^{2} .
$$

Similarly if $m-|\alpha|+|\beta|-1=\frac{3}{p}$, then $0 \geqslant 1$ is arbitrary but in this case $m-|\beta|=2 m-|\alpha|-1-\frac{3}{\rho} \geqslant m-1-\frac{3}{p}>0$. Hence $\rho>p \geqslant 1$, we choose $\sigma=\frac{\rho}{\rho-1}$ and we write

$$
|g h|_{p} \leqslant|g|_{o}|h|_{\rho} .
$$

The last case to consider is the case where ρ and σ are finite and givan by

$$
\frac{1}{\rho}=\frac{1}{p}-\frac{m-|\beta|}{3}, \quad \frac{1}{\sigma}=\frac{1}{p}-\frac{m-|\alpha|+|\beta|-1}{3} .
$$

By Holder inequality (1.17) is satisfied in this case provided that

$$
\begin{aligned}
& \frac{1}{\rho}+\frac{1}{0} \leqslant \frac{1}{\rho} \\
& \frac{3}{p}-2 m+|\alpha|-1 \leqslant 0
\end{aligned}
$$

i.e.
and this is true as $|\alpha| \leqslant m$ and $m>1+\frac{3}{p}$.
2. THE EXISTENCE AND UNIQUENESS RESULT.

Theorem. Assume that Ω is a regular bounded open set of $\mathbb{R}^{3(1)} ;$ let m and p be given, $p \geqslant 1, m>1+\frac{3}{p}$. Then for each u_{0} and f,
(2.1) $\quad u_{0} \in \aleph^{n, p}(\Omega)^{3}, \operatorname{div} u_{0}=0, u_{0} \cdot n=0$ on $\partial \Omega$,

$$
\begin{equation*}
\mathrm{f} \in \mathrm{~L}^{?}\left(0, \mathrm{~T} ; \mathrm{N}^{\mathrm{m}, \mathrm{P}}(\Omega)^{3}\right) \tag{2.2}
\end{equation*}
$$

there exists a unique function,u and π, definec on $\left(0, T_{x}\right)$,

[^0]\[

$$
\begin{equation*}
u \in L^{\infty}\left(0, T_{*} ; W^{m}, p(\Omega)^{3}\right) \tag{2.3}
\end{equation*}
$$

\]

$$
\begin{equation*}
\pi \in L^{\infty}\left(0, T_{*} ; W^{m+1, p}(\Omega)\right) \tag{2.4}
\end{equation*}
$$

where $T_{*}<\underline{\inf }\left(T, T_{1}\right)$ $\left({ }^{1}\right)$, and satisfying $(0.1)-(0.4)$ on $\left(0, T_{*}\right)$.

Remarks. (i) The Theoremis also valid in higher dimensions, with the natural modification on the assumption on $m\left(m>1+\frac{N}{p}\right)$;
(ii) Because of the boundary layer effects we can not expect to prove as in Kato [5] the existence on $\left(0, T_{*}\right)$, for each $\nu>0$ of a solution of the Navier Stokes equations belonging to $H^{m}(\Omega)^{3}$

The proof of uniqueness is standard. We will just show the existence of u and π, considering successively the case $p=2$ and $p \neq 2$.

Case $\mathrm{p}=2$.
We apply the Calerkin method with a special basis $\left\{w_{k}\right\}$ which we first describe
(i) For m fixed a's before, we consider the space $X_{m} \subset H^{m}(\Omega)^{3}$, endowed with the Hilbert scalar product $((., .))_{m}$, and the space X_{0} which is a closed subspace of $L^{2}(\Omega)^{3}$. It is clear that $X_{m} \subset X_{0}$ and X_{m} is dense in X_{0}. By the Lax-Milgram theorem, for each $g \in X_{0}$, there exists a unique $w \in X_{m}$ such that

$$
\begin{equation*}
((w, v))_{m}=(g, v), \quad \forall v \in x_{m} \tag{2.5}
\end{equation*}
$$

The linear mapping $g \mapsto w(g)$ is a compact self adjoint operator in X_{0} and it possesses an orthonormal complete family of eigenvectors w_{k} :

$$
\left\{\begin{array}{l}
w_{k} \in X_{m} \text { and } \tag{2.6}\\
\left(\left(w_{k}, v\right)\right)_{m}=\lambda_{k}\left(w_{k}, v\right), \quad \forall v \in X_{m} .
\end{array}\right.
$$

(ii) Let us use the Gaierkin method with this basis. For $\mu>0$ fixed we look for

$$
\begin{equation*}
u_{\mu}=\sum_{j=1}^{\mu} g_{j \mu}(t) w_{j} \tag{2.7}
\end{equation*}
$$

(1) See (1.10) and (1.15).
satisfying
(2.8) $\frac{d}{d t}\left(u_{\mu}, w_{k}\right)+\left(\left(u_{\mu}, g r a d\right) u_{\mu}, w_{k}\right)=\left(f, w_{k}\right), \quad 1 \leqslant k \leqslant \mu$,

$$
\begin{equation*}
u_{\mu}(0)=u_{o \mu}=p_{\mu} u_{0}, \tag{2.9}
\end{equation*}
$$

$P_{\mu}=$ the orthogonal projection in X_{o} (or as well in X_{m}) on the space spanned by $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{k}}$.

The equations (2.8), (2.9) are equivalent to a system of ordinary differential equations for the $g_{j \mu}$, and the existence of a solution on some interval ($0, T_{\mu}$) is standard. The following a priori estimates on u_{μ} show that $T_{\mu}=T_{*}$ is independant of: μ.
(iii) The first a priori estimate is obtained by multiplying (2.8) by $\mathrm{g}_{\mathrm{k} \mu}(\mathrm{t})$ and adding in k . It is well known (see also s.1) that

$$
\left(\left(u_{\mu} \cdot \operatorname{grad}\right) u_{\mu}, u_{\mu}\right)=0
$$

and there remains

$$
\frac{1}{2}\left(\frac{d}{d t}\right)\left|u_{\mu}\right|^{2}=\left(f, u_{\mu}\right) \leqslant|f| \cdot\left|u_{\mu}\right| .
$$

This shows that $T_{\mu}=T$ and that
(2.10) $\quad u_{\mu}$ remains bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)^{3}\right)$ as $\mu \rightarrow \infty$.

We can also write (2.8) as
(2.11)

$$
\left(\frac{d u_{\mu}}{d t}, w_{k}\right)+\left(P\left[\left(u_{\mu} \cdot g r a d\right) u_{\mu}\right], w_{k}\right)=\left(P f, w_{k}\right)
$$

$\left(w_{k} \in X_{o}\right)$. Now $P\left[\left(u_{\mu}(t)_{\varepsilon} r a d\right) u_{\mu}(t)\right] \in X_{m}, \operatorname{Pf}(t) \in X_{m}, \forall t$, (see (1.11)) and we can use (2.6). We multiply (2.11) by $\lambda_{k} g_{k}$ and dd in $k, k=1, \ldots, \mu$. We obtain

$$
\begin{equation*}
\frac{1}{2}\left(\frac{d}{d t}\right)\left\|u_{\mu}\right\|_{m}^{2}=\left(\left(P\left(f-\left(u_{\mu} \cdot g r a d\right) u_{\mu}, u_{\mu}\right)\right)_{m}\right. \tag{2.12}
\end{equation*}
$$

We have simply

$$
P\left[f-\left(u_{\mu} \cdot g r a d\right) u_{\mu}\right]=f-\left(u_{\mu} \cdot g r a d\right) u_{\mu}-\varepsilon \operatorname{rad} \pi_{\mu},
$$

where π_{μ} is defined in term of u_{μ} and f by relations similar to (1.2), (1.3) (replacing u by u_{μ}). The relation similar to (1.5) is satisfyed and we get exactly the same relation as (1.8)

$$
\left(\frac{d}{d t}\right)\left\|u_{\mu}\right\|_{m}^{2} \leqslant c_{1}^{\prime}\left\|u_{\mu}\right\|_{m}^{2}+c_{2}^{\prime}\|f\|_{m} .
$$

We recall also that

$$
\left\|u_{\mu}(0)\right\|_{m}=\left\|u_{o \mu}\right\|_{m} \leqslant\left\|u_{o}\right\|_{m}
$$

Whence,

$$
\left\|u_{\mu}(t)\right\|_{m} \leqslant y(t), \forall t<\inf \left(T, T_{0}\right)
$$

and
(2.13) As $\mu \rightarrow \infty, u_{\mu}$ remains bounded in $L^{\infty}\left(0, T_{*}, H^{m}\left(s_{l}\right)^{3}\right)$

$$
\forall \mathrm{T}_{*}<\inf \left(\mathrm{T}_{\mathrm{o}} \mathrm{~T}_{0}\right)
$$

(iv) In order to pass to the limit in the non linear term using a compactness theorem, we need an estimate on $\frac{d u_{\mu}}{d t}$.

Since the w_{k} are orthogonal in X_{o}, we deduce from (2.11) that

$$
\frac{d u_{\mu}}{d t}=P_{\mu} P\left(f-\left(u_{\mu} \cdot g r a d\right) u_{\mu}\right)
$$

Hence

$$
\left|\frac{d u}{d t}(t)\right| \leqslant\left|f(t)-\left(u_{\mu}(t) \cdot g r a d\right) u_{\mu}(t)\right|
$$

and with (2.13) it is easily found that
(2.14) $\frac{d u_{\mu}}{d t}$ remains bounded in $L^{\omega}\left(0, T_{*} ; L^{2}(\Omega)^{3}\right)$ as $\mu \rightarrow \infty$.
(v) The passage to the limit using (2.13), (2.14) and a compactness theorem (as in Lions [7]) is standard. We obtain at the limit the existence of $u \in L^{\infty}\left(0, T_{*} ; X_{m}\right)$ such that

$$
\begin{equation*}
\frac{d}{d t}(u(t), v)+((u(t) \cdot g r a d) u(t), v)=(f(t), v) \quad \forall v \in X_{0}, 0<t<T_{*} \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
u(0)=u_{0} \tag{2.16}
\end{equation*}
$$

\mathbf{u} satisfies all the properties announced, i.e. (0.2)-(0.4) and (2.3). Because of (2.15) the existence of π such that (0.1) is satisfied is standard (see Ladyzhenskaya [6]).

Case $p \neq 2$.
We proceed by regularization. We approximate u_{0} and f by $u_{o \varepsilon}$ and f_{ε},

$$
\begin{gathered}
u_{O \varepsilon} \in X_{s} \\
f_{\varepsilon} \in L^{1}\left(0, T ; H^{5}(\Omega)^{3}\right)
\end{gathered}
$$

with s sufficiently large so that

$$
H^{s}(\Omega) \subset W^{m, p}(\Omega)
$$

and $X_{s} \subset X_{m, p}$. We solve (0.1)-(0.4) with u_{0} and $f r o p l a c e d$ by $u_{o \varepsilon}$ and f_{ε}. The estimate analog to (1.14) and an easy estimate on $\frac{\partial u_{E}}{\partial t}$ allow us to pass to the limit as $\varepsilon \rightarrow 0$ and we obtain (0.1)-(0.4) on ($0, T_{*}$).

REFEKENCES.

[1] AGMON, DOJGLIS and NIRENBERG - Estimates near the boundary for solutions of elliptic par ial differential equations satisfying general boungaty conitions I. Com. Pure App1. Math., 17, 1959, p.623-727.
[2] J.P. BOURGUGNON and BRERS - Remarks cn the Euler equations, ¿. or fury Anal,
[3] D. EBIN and J. MARSDEN - Ggoups of diffeomorphisms and the motion of an inconpressible fluid, Ant. of Math, 92, 1970, p.102-163.
[4] T. KATO - On classicat Sjetions of two dimensional nonstationary fuler $\frac{\text { equachons. }}{\text { Arch. Fic. Mech. Anal., } 25,1967,183-200, ~}$

[6] O.A. LADYZHENSKAYA - The mathematical theory of viscous incompressible flow, Gordon and Breach, New-York, 1969.
[7] J.L. LIONS - Quelques méthodes de résolution des prob]èmes aux limites non $\frac{\text { linéaires, }}{\text { Dunod-Gauthier-Villars, Paris, } 1969 .}$

[^0]: and Ω is jocally sicuated on one side isi a_{3},

