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XXIV.1

Given an open, relatively compact domain M in a complex

manifold M ° such that b M, the boundary of M, is smooth. We are given

a form a E L2(M) of degree (0,1) , i.e. in terms of local holomorphic

coordinates :

where a. E L2(M) . Ue are interested in finding a solution u of the equation
J 

which is as "smooth as possible". More precisely, we seek a function u

satisfying (2) such that

This means that ifQ is an open subset of M’ on which a is of class Co
co

then u restricted to Q is of class C . Since the system (2) is elliptic

the condition (3) is satisfied in the interior for every solution u of (2)

At the boundary, however, the problem is more del--"Lcate ; for if h is any

holomorphic function on M and if u satisfies (2) then u + h also satisfies

(2) , so that there are many solutions of (2) which do not satisfy (3) at

the boundary.

The assumption that the boundary b M is smooth means that
"0

there is a real-valued function r, $ of class C , defined in a neighborhood
of b M such that dr / 0 and r(P) = 0 if and only if P E b M. We will fix

the sign of r so that r &#x3E; 0 outside of M and r  0 inside of M. For each

P E b M we denote by T- (b M ) the subspace of the complex tangent vec-

tors C Tp(bM ) of the form

he Levi form at P E b M is a hermitian form on T 110 (b M) defined by : :p
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If this form is non-negative for each P E bM , we say that M is pseudo-

convex. From now on we will assume that M is pseudo-convex.

If M GC £2 is a pseudo-convex domain such that in a neigh-
borhood U of (0,0) the function r = Ae(z ) ; then, we set a - 

2013 
with

2 
. ~2

p 6 C (U) and p 1 in a neighborhood Ul of (0,0) . Now we will show that
o

there is no solution of (2) which satisfies (3). For if there were a func-

tion u satisfying (2) and (3) then the function h = u- z would be
2

holomorphic.

Restricting h to the line z 2 = -6 we obtain a function on

a disc in z 1 which on the boundary of the disc is bounded independently
of 6 and at the origin behaves like -7. this is a contradiction. Neverthe-

less we do have the following positive result.

Theorem : If M is pseudo-convex and if there exists a strongly pluri- sub
harmonic non-negative function X in a neighborhood of bM (for example
if M c: Cn we can set X = and if a is a (0,1)-form in L 2 such that
3 a- 0 and such that a is orthogonal to the null space of b (the L2- adjoint
of 5)y then there exists u E L (M) such that bu = a. If furthermore

sing supp (a) = 0 (i.e. a E C (M)) then for each m there exists u 
m 

E C (M)
such that b u = a.

m

Outline of proof : The existence of a solution u has been proved by

Hbrmander (see E41). His proof is based on an estimate with weight functio

which we also use here. For t ¿ 0 set

- -11~ 20132013

Denote by d the adjoint of b with respect to the norm II 11 (t) . . The
" 

2013~ ~ t ~
smooth forms in the domain of dt are given by
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Let Q t be a quadratic form on 5, defined by :

and let Ot .1~/ be the completion of a under Qt. Now the estimate referred
to above (and proved in [4]) is the following : there exists a functionto above (and proved in [4]) is the following : there exists a function

f E a constant C &#x3E; 0 independent of t and for each ta C &#x3E; 0 such

that :

where 11 III denotes the Sobolev one-norm. Given a there exists a unique
E ~ t such that :

for all * E 9. Using the methods of [8J one can establish the following

estimate for E C"O(M) - For each s there exists T and Csit

Here jj II s denotes the Sobolev s-norm. l’le can also show that, if K t is
defined by

then for t sufficiently large there exists C &#x3E; 0 such that for all
JL./

From (9) and interior ellipticity, ’ it follows that Kt is finite dimensional
if t is sufficiently large ; again using the methods of [8J it can be

shown that 3-Ctc H when t Ts, where H denotes the Sobolev space. It
t s s s 

"

then follows the unique solution vt of avt = a which is orthogonal to the
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holomorphic functions under the ( , ) t inner product has the property
that v E H if t z T . The assertion then follows by the Sobolev imbeddt s s 

.

theorem. 

The details of this proof will appear in ~, 6~ .

We remark that in ~2~ Grauert gives examples of pseudo
convex domains for which the above conclusions do not hold, in his examp

the function does not exist. It would be desirable to improve the abov

theorem and to establish the existence of a solution u E (M) .

Returning to our general question, we wish to find condi-

tions on M such that whenever (2) has a solution it also has a solu

tion satisfying (3). Examples such as the one above lead to the followin

conjecture :

Conjecture : If bM contains a connected non-trivial analytic variety

then there exists a form a = 5v with the property that no solution of

(2) satisfies (3).

If P E b M and P is a regular point of a non-trivial con

ted analytic vari ety V c b M then there exists a vectorfield L of degree

( 1, 0) defined in a neighborhood U of P with the property that L restric

to V is tangent to V.

190 
Denoting by the space of vectors conjugate to

we observe that all vectors tangent to V are contained in

+ In particular, since all elements of the Lie algebp p p ’

generated by L and L are tangent to V they are all contained in

+ T0’I(b M) This motivates the following definition :p p 
° g

Defirition : If P E b M and L is a vectorfield of type (1, 0) defined o
a neighborhood U of P such that for each Q E U n b M , LQ E th

_ 
Q Q

we let °(L) be the space spanned by L and L and for each integer k &#x3E; 0

we let
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lie denote by the space of vectors obtained by evaluating all the
e p k e so 0

vector fields at P. We say that L is of finite order at P if for

some k :

B1e say L is of order k at P if k is the lowest integer for which (15)

holds and we say that L is infinite order at P if (15) does not hold for

any k.

The following a-be properties of the above definitions.

(a) The order of L at P depends only on the value of L at P, I. e» if

1..1 and Ll are two vectorfields which on b Pi are in and if L = L~
P P

then the order of L at P is equal to the order of L ~ at P. Thus we can

speak of the order of a vector in 
p

(b) If M is pseudo-convex 1, e is of order k then k is odd.’ p 
’ "

(c) If M is pseudo-con;ex, then M is strongly pseudo-convex (i.e. the

Levi form (5) is positive definite) if and only if each non-zero L G T P (b M)
for all P E b M is of order one. It

(d) All vectors in are --f infinite order if and only if the’ 

p 
’ " Y

Levi form applied to every L a z?ro of infinite order at

P.

These properties show that, in some sense , the notion of

order measures the convexity of bMat P. However, an example given in a

joint paper with 9. Nirenberg ee 91) shows that this convexity does

not imply the existence of separating holomorphic functions.

Definition a lie say that subelliuticity holds for the domain M if there

exists c &#x3E; 0 and C &#x3E; 0 such that

where Q = Q 
o 

defined by (8), 9 is defined by (7) and 11 11 E is the Sobol e~=

e-norm.
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An important consequence of this concept is that if subelliptic

ty holds then the unique solution u of (2), which is orthogonal to the

holomorphic functions, satisfies (3) (see [11 and [8]) . We will now dis-

cuss under what circumstances this condition is satisfied.

The estimate (16) can never hold with c &#x3E; 1: This estimate

holds with c 2 if and only if the dimension of M is one, ’ in this case
2

c = 1 and Q is basically the classical Dirichlet integral. The estimate

holds with c - 2 if and only if M is strongly pseudo-convex.

The following conjecture has been proved for very large

classes of domains and the proof of the sufficiency in the general case

is almost complete.

Conjecture : Subellipticity holds for some c &#x3E; 0 in a domain M if and

only if for each P E b M and each L E T ’ (bM), L / 0, is of finite type.p

Outl ine of proof of suf f i ciency : First we remark that the estimate (16)

is localizable, i.e. it suffices to show that for each P E bM there exists

a neighborhood U of P, such that (16) holds for all cp E 9 n M) .
0

Next, subellipticity holds independently of the hermitian metric (this

is proved in great generality in [10]) . The proof involves choosing an

appropriate basis for the vectorfield in T1’0(bM) and the hermitian
metric is defined by requiring that basis be orthonormal. Let ... , Ln
be a basis for the vectorfields of degree (1,0) on a neighborhood U of

P E b M , such that :

and define N by

Then for each P E u n for 1  - j :!! n - 1 and N,

evaluated- at P’, are a basis of CT (bM). Let the dual basis

of L...yL ; thus is a (0,1)-form on U it can be expressed as :
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The condition that y E 9 is equivalent to

In terms of the above basis for CT (bM) the Levi form can be expressed
P

as follows:

c .. is then the Levi form.
ij

if M is pseudo-convex we have the following estimate

(see [lJ) .

Let Xl 9 - - - gx 2n-1 be C functions such that Xl,...,,x 2n-1 I
r form a local real C coordinate system in a neighborhood U of P. If

u E U n M) we define the tangential Fourier transform by i
0

where

For each s 6 R we define the tangential s-norm of u by :

The following estimate is equivalent to (16) : 1
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Establishing(25) is equivalent to bounding

by the left hand side of (22) 9 here T2e-l is a pseudo differential opera-
00

tor of order 2~ - 1 on the hyperplanes r = const . which depends in a C 
Co

manner on r. The condition of finite order can be expressed as follows,

L is of order k at P if and only if k is the lowest integer such that
.....

In case there exists a basis L1, ... ,Ln such that c.. 
= bi . the conjecture1 IY J J

is proved in [71, a basis always exists if there is at most one eige
value that van i shes) .. , We can also prove the conjecture if there

exists a basis non-negative functions n-1 and integers
Ml 9... im n-1 such that

with

(30)

and

for j &#x3E; k and p = 1, ... , mk. Here »0 indicates that the quantity can be

estimated by lower derivatives of the f.

As yet we do not know whether such a basis exists in gener
it is to construct one satisfying (29)., (30) and whic

satisfies (31) only for p = 1 by use of the following lemma.
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Lemma : Let L, ... ,L be independent vectorf ields of degree (1,0) withva-

iUes in T§’ °b M&#x3E; for P G b M , let c.. i,j=l,...,k be defined by (2.‘ and
p J J &#x3E; &#x3E;

f= 
iJ

Then if M is pseudo-convex and if all non zero vector field

which are combinations of of finite order exist

n -M
L = E a .L . such &#x3E; 0.

j=l J i

In case of complex dimension 2 the necessity proved

by Greiner (see [31) and we expect that the same methods will give the

necessity as soon as sufficiency is proved in general.
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