SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

D. DACUNHA-CASTELLE

Ultraproduits d'espaces L^p et d'espaces d'Orlicz

Séminaire Équations aux dérivées partielles (Polytechnique) (1971-1972), exp. nº 10, p. 1-9

http://www.numdam.org/item?id=SEDP_1971-1972____A10_0

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1971-1972, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V
Téléphone : MÉDicis 11-77
(633)

SEMINAIRE GOULAOUIC-SCHWARTZ 1971-1972

ULTRAPRODUITS D'ESPACES LP ET D'ESPACES D'ORLICZ

par D. DACUNHA-CASTELLE

<u>Définition 1</u>: Soit B, C, C' des espaces de Ban.ch, \mathcal{C} , \mathcal{C}' des classes d'espaces de Banach et λ un nombre \geq 1.

On dit qu'il existe un λ -plongement de B dans C, noté B $\stackrel{\lambda}{\rightarrow}$ C, s'il existe un λ -isomorphisme de B sur un sous-espace de C.

Il existe un λ -plongement de B dans \mathcal{C} noté B $\xrightarrow{\lambda}$ \mathcal{C} , s'il existe $C \in \mathcal{C}$ avec B $\xrightarrow{\lambda}$ C.

Il existe un λ -plongement de $\mathcal C$ dans $\mathcal C'$ si pour tout $C \in \mathcal C$, il existe $C' \in \mathcal C$ avec $C \xrightarrow{\lambda} C'$. Ceci se note $\mathcal C \xrightarrow{\lambda} \mathcal C'$.

S'il existe $\lambda \geq 1$ avec $C \stackrel{\lambda}{\rightarrow} C'$, la dimension de Banach (dimension linéaire) pour les isomorphismes de C est dite inférieure à celle de C', ce que l'on note :

 $\dim \mathcal{C} \leq \dim \mathcal{C}'$.

Définition 2 : Un espace de Banach C (resp. une classe de Banach C) est dite avoir la propriété de λ-finitude si pour tout Banach B, les deux propriétés suivantes sont équivalentes :

1 - $B \stackrel{\lambda}{\rightarrow} C$; (resp. $B \stackrel{\lambda}{\rightarrow} C$).

2 - $B_F^{\ \ \, \lambda}$ C , pour tout sous-espace $B_F^{\ \ \, }$ de dimension finie de B: (resp. $B_F^{\ \ \, \lambda}$ C).

Théorème 1: Soit $\mathcal C$ une classe de Banach, stable par ultraproduit, sous-espace, et isométries. Alors $\mathcal C$ a la propriété de λ -finitude pour tout $\lambda \geq 1$.

<u>Démonstration</u>: Cela résulte immédiatement de la proposition 2 de l'exposé précédent.

Proposition 2: Soit $(B_i)_i \in I$ une famille d'espaces de Banach réticulés. Alors $\mathfrak{T}_{i \in I} B_i/\mathfrak{A}$ est un espace de Banach réticulé pour l'ordre: $(f_i)_{i \in I} \geq (g_i)_{i \in I}$ si et seulement si $\{i, f_i \geq g_i\} \in \mathfrak{A}$. (cf. [2] pour les détails de la démonstration).

Remarquons que toute classe d'espace de Banach réticulés, stable par ultraproduit, isométrie et sous-espace de Banach réticulé se caractérise par des conditions du type de celles indiquées au théorème 3 de 1 exposé

procédent mais faisant intervenir les termes du "langage" des Banach rétroulés (c'est-à-dire le symbole \cup ou le symbole $|\cdot|$). Nous n'énoncerons pas ici le théorème 3 pour les Banach réticulés, nous contentant de l'exemple important suivant des L^p .

Exemple:

La classe des espaces L^p est stable par sous-espace réticulé. En effet, il est bien connu qu'un sous-espace réticulé de $L^p(\mathfrak{X},\mathfrak{C},\mu)$ est du type $L^p(\mathfrak{X},\mathfrak{B},\mu)$ où \mathfrak{g} est une sous- σ -algèbre de \mathfrak{C} . On sait donc par avance que les deux propriétés suivantes sont équivalentes :

- 1 L^p est stable par ultraproduit.
- 2 L^p admet une caractérisation.

Dans ce cas particulier, on connaît la caractérisation de L^p, dite de Nakano, à savoir

$$\forall x, \forall y \ [x \ge 0, \ y \ge 0 \Rightarrow (\|x \cup y\|^p \le \|x\|^p + \|y\|^p \le \|x + y\|^p) \tag{1}$$

Il est élémentaire de vérifier que si une classe $\mathcal C$ vérifie (1) alors tout ultraproduit d'éléments de $\mathcal C$ vérifie aussi (1). Donc, la caractérisation de Nakano implique la stabilité de L^p par ultraproduit [cf.[1]]; (toute démonstration de l'existence d'une caractérisation pour la classe de Banach SL^p paraît passer par l'étude de la classe de Banach réticulés L^p).

Remarquons que les formules du théorème 3 qui caractérisent ${\rm SL}^p$ peuvent être simplifiées, en tenant compte, pour p > 1 de la convexité uniforme des espaces ${\rm SL}^p$.

Cependant les formes les plus simples de caractérisation (par exemple, pour $1 \le p \le 2 \|x\|^p$ est de type négatif, soit $\sum_{i,j} \|x_i - x_j\|^p \rho_i \rho_j < 0$, pour $\sum_{i=1}^{\infty} \rho_i = 0$) nécessitent la transformation de Fourier.

La caractérisation de Nakano, comme les applications qui suivent aux espaces d'Orlicz, sont fondées sur le résultat suivant concernant les R-espaces réticulés dont nous donnons dans [2] la démonstration. Théorème 3 : Soit B un espace normé R-réticulé satisfaisant à :

- $1 \|x\|, \| = \|x\|.$
- 2 L'application $\mathbf{x} \rightarrow ||\mathbf{x}||$ de B $\rightarrow \mathbf{R}^+$ est strictement croissante.
- 3 Soit $(x_n)_{n \in \mathbb{N}}$ une suite décroissante d'éléments ≥ 0, alors $(x_n)_{n \in \mathbb{N}}$

est convergente.

Alors si \mathfrak{B} est une algèbre de Boole d'éléments positifs de B vérifiant : 1' - Si $e \in \mathfrak{B}$, $u \in B$ alors $(e - u) \cap u = 0 \Rightarrow u \in \mathfrak{B}$

2' - Pour tout $u \in B$, il existe $e \in B$ avec $e \cap u \neq 0$.

Sous ces hypothèses, l'espace vectoriel ' (3) engendré par B est partout dense dans B.

Enfin pour tout espace B, vérifiant 1, 2, 3, on peut trouver une algèbre de Boole $\mathcal B$ vérifiant 1', 2'.

Nous allons appliquer ce résultat au calcul d'ultraproduits de certains espaces d'Orlicz.

Définition : Soit F une fonction convexe

$$F : [0,\infty] \rightarrow [0,\infty]$$

$$F(0) = 0, F(\infty) = \infty.$$

On supposera dans la suite que F satisfait la condition Δ_2 suivante : Il existe k tel que $F(2x) \leq kF(x)$. (La théorie des ultraproduits d'espaces où F ne satisfait pas Δ_2 , ne paraît pas intéressante, et ne l'est pas du point de vue de la dimension linéaire introduite ci-dessous, car triviale).

L'espace $L_F(\mathcal{X},\mu)$ des classes de fonctions f μ -mesurables sur un espace mesuré (\mathcal{X},μ) qui satisfait en outre : $\int_{\mathcal{X}} F(|f|) d\mu < \infty$ est dit espace d'Orlicz.

On le dote par exemple de la norme

$$\|\mathbf{f}\|_{\mathbf{F}} = \inf \{\theta, \int_{\mathcal{X}} \mathbf{F}(\mathbf{f}) d\mu \leq 1\}$$

et on pose $\Phi(f) = \int_{\mathcal{R}} F(|f| d\mu)$.

Remarques :

1 - Il existe des fonctions numériques ϕ_1 et ϕ_2 (dépendant évidemment de F) telles que $\phi_1(\|\mathbf{f}\|) \leq \Phi(\mathbf{f}) \leq \phi_2(\|\mathbf{f}\|)$ avec ϕ_1 , ϕ_2 croissantes sur \mathbf{R}^+ , de 0 à 1' ∞ . (cf. [2]). Cette remarque sera utilisée implicitement dans la suite.

2 - On écrit F \sim G s'il existe des constantes 0 < a,b,m,M < ∞ , telles que

(1) $m \le \frac{F(ax)}{G(ax)} \le M$

pour tout x > 0. Si F ~ G alors L_F et L_G sont isomorphes. S'il existe \mathbf{x}_o tel que (1) soit vérifié pour x > \mathbf{x}_o on écrit F ~ G. Si de plus $\mu(\mathfrak{X}) < \infty$, les espaces L_F et L_G sont λ -isomorphes pour un certain λ . On notera L_F^K un espace L_F (\mathfrak{X},μ) tel que $\mu(\mathfrak{X}) < \infty$. De la même manière, on notera $\mathbf{1}_F(\mathfrak{X})$ l'espace des familles de réels indexées par \mathfrak{X} , et F-sommables. S'il existe \mathbf{x}_o tel que (1) soit vraie pour $\mathbf{x} < \mathbf{x}_o$, alors $\mathbf{1}_F(\mathfrak{X})$ et $\mathbf{1}_G$ (\mathfrak{X}) sont isomorphes, pour tout \mathfrak{X} .

Nous allons maintenant calculer, à titre d'exemple, les ultrapuissances $\mathbf{B}=\left(\mathbb{L}_F^K\right)^{1/\mathfrak{A}}$ de l'espace $\mathbf{L}_F[\left(0,1\right),d\mathbf{x}]$ noté \mathbb{L}_F^K dans la suite pour simplifier. Considérons d'abord les éléments du type $\left(\mathbf{1}_{A_i}\right)_{i\in I}, \text{ où } \mathbf{A}_i \text{ est un borélien de } (0,1). \text{ Soit :}$

$$\mathfrak{B}_{0} = \{(1_{A_{i}})_{i \in I}, A_{i} \text{ bor\'elien de } (0,1)\}.$$

Posons pour $(f_i)_{i \in I} \in B$

$$\Phi((f_i)_{i \in I}) = \lim_{\mathfrak{N}} \Phi(f_i)$$

et pour $(1_{A_i})_{i \in I} \in \mathcal{B}_0$, posons

$$\mu((1_{A_i})_{i \in I}) = \Phi((1_{A_i})_{i \in I}).$$

Alors μ définit sur \mathfrak{F}_0 une mesure σ -additive, de masse 1. Et, par le théorème de Stone, \mathfrak{F}_0 est identifiée à une algèbre de parties d'un ensemble. Soit $V(\mathfrak{F}_0)$ le sous-espace de B engendré par \mathfrak{F}_0 , c'est-à-dire l'espace des fonctions \mathfrak{F}_0 -étagées.

Comme $\Phi(\lambda(1_{A_i})_{i \in I}) = F(\lambda) \mu((1_{A_i})_{i \in I})$ il est clair que le complété de

 $V(\mathfrak{B}_{0})$ pour la norme de B n'est autre que l'espace $L_{F}^{K'}(\mathfrak{B}_{0},\mu)$, que l'on peut écrire de manière plus concrète :

$$L_{\Gamma}^{K}([(0,1),dx]^{I/\mathfrak{A}}),$$
 [(0,1),dx]^{I/\mathfrak{A}}

représentant l'ultrapuissance de l'espace mesuré [(0,1),dx], en un sens facile à définir.

On peut donc écrire

$$B = L_{\mathbf{F}}^{K} \left(\mathfrak{B}_{\mathbf{o}}, \mu \right) + B_{1}$$

où B_1 est l espace des éléments étrangers à B_0 .

Les éléments de B₁ sont donc tels que

$$\lim_{\mathfrak{V}} \| (f_i)_{i \in I} \cap M(f_{A_i})_{i \in I} \| = 0$$

pour tout $M \in \mathbb{R}^+$, tout élément $(1_{A_i})_{i \in I}$ de \mathcal{B}_o .

Comme $\|(f_i)_{i \in I}\| \rightarrow 0 \Leftrightarrow \phi ((f_i)_{i \in I}) \rightarrow 0$, on a

$$\lim_{\mathfrak{N}} \int F(|f_{i}(x)|) dx = 0$$

$$(|f_{i}| \leq M)$$

L'identification de B_1 en tant qu'espace fonctionnel est un problème non résolu dans le cas général. Nous ne connaissons la forme de B_1 que dans des cas particuliers, ou lorsque l'on a une bonne interprétation probabiliste. Comme cas particulier simple, prenons $F(x) = x^p L(x)$ avec

 $\lim_{x\to\infty} \frac{L(\lambda x)}{L(x)} = 1 \text{ pour tout } \lambda > 0.$

(L est une fonction à variation lente).

D'après le théorème 2, il existe une σ -algèbre d'éléments de B_1 , soit \mathfrak{B}_1 telle que l'espace $\mathbf{V}(\mathfrak{F}_1)$, engendré par \mathfrak{B}_1 soit dense dans B_1 .

On définit comme précédemment une mesure v sur \mathcal{B}_1 , en posant

$$v((f_i)_{i \in I}) = \phi ((f_i)_{i \in I})$$

pour tout $(f_i)_{i \in I} \in \mathfrak{B}_1$.
Pour pouvoir identifier B_1 , calculons Φ $(\lambda(f_i)_{i \in I})$ lorsque $(f_i)_{i \in I} \in \mathfrak{B}_1$.

Soit $\lambda > 0$ fixé, $\epsilon > 0$ fixé et choisissons M tel que

$$x > M \Rightarrow \frac{|L(\lambda x)|}{|L(x)|} - 1 < \epsilon.$$

0n a

$$\lim_{\mathfrak{V}} \int_{\{|\mathbf{f}_{i}(\mathbf{x})|\}} \mathbf{f}(\mathbf{x}) | d\mathbf{x} = 0$$

et donc

$$\Phi (\lambda(f_i)_{i \in I}) = \lim_{\mathfrak{A}} \int F(\lambda|f_i(x)|) dx$$
$$\{|f_i| \ge M\}$$

Mais

$$\int [|F(\lambda|f_i(x)|) - \lambda^p F(f_i)|] dx$$

$$\{|f_i| \ge M\}$$

$$= \lambda^p \int F(|f_i|) |1 - \frac{L(\lambda|f_i|)}{L(|f_i|)} | dx$$

$$|f_i| \ge M$$

$$\le \varepsilon \lambda P \int_0^1 F(|f_i|) dx.$$

Comme ε est arbitraire, on a donc :

$$\Phi (\lambda(f_i)_{i \in I}) = \lambda^p \nu((f_i)_{i \in I});$$

On en déduit aisément que B₁ est isométrique à L^p($\mathfrak{B}_1, \mathbf{v}$) et que

$$B = L_F^K (\mathfrak{Y}_0, \mu) + L^p(\mathfrak{Y}_1, \nu),$$

tout élément de B s'écrivant alors u = v + ω, avec

$$\|\mathbf{u}\|_{\mathbf{B}} = \inf \{\theta, \int \mathbf{F}(\frac{\mathbf{v}}{\theta}) d\mu + \int \frac{\mathbf{w}^{\mathbf{p}}}{\theta \mathbf{p}} d\nu \leq 1\}$$

Pour terminer, représentons L^2 comme un espace gaussien \mathcal{H} , sous-espace de $L^2(\Omega,\mathcal{O},\tilde{\mathbf{p}})$, $(\Omega,\mathcal{O},\mathbf{p})$ espace de probabilité. Il est alors trivial que \mathcal{H} est isométrique à un sous-espace de L_F $(\Omega,\mathcal{O},\mathbf{p})$ quelque soit F. Prenons $F(\mathbf{x}) = \mathbf{x}^2 L(\mathbf{x})$ et appliquons le résultat précédent. On a une décomposition $B = L_F^K + L^2$, soit u = v + w la décomposition d'un élément, on a

$$\|\mathbf{u}\|_{\mathbf{B}} = \inf \{\theta, \int \mathbf{F}(\left|\frac{\mathbf{v}}{\theta}\right|) d\mu + \int \mathbf{F}\left|\frac{\boldsymbol{\omega}}{\theta}\right| d\nu \leq 1\}$$

(w est gausienne centrée) et donc B est isométrique à un sous-espace de L_F^K muni de sa norme naturelle (remarquons qu'en modifiant un peu la démonstration, on peut choisir L^2 isomorphe à un sous-espace complémenté de L_F^K) d'où :

 $\frac{\text{Proposition}}{\text{Proposition}}: \text{ Les classes } \text{SL}_{\mathbf{x}}^{K} 2_{L(\mathbf{x})} \text{ sont stables par sous-espace, isométrie et ultraproduit et admettent donc une caractérisation. De plus elles satisfont la propriété de finitude. On est amené à faire les conjectures suivantes : }$

1 - Toute classe SL_F^K est stable par ultraproduit.

2 - Soit $\mathrm{UP}(\mathrm{SL}_{\mathrm{F}}^{\mathrm{K}})$ la classe des ultraproduits d'éléments de $\mathrm{SL}_{\mathrm{F}}^{\mathrm{K}}$.

Soit L_G un espace d'Orlicz.

Conjecture : les deux conditions suivantes sont équivalentes

1 - $Dim L_G \leq Dim L_F^K$

 $2 - L_G \in UP(SL_F^K).$

Les résultats probabilistes obtenus dans [3] et [4] concernant les dimensions linéaires respectives des espaces \mathbf{L}^p , \mathbf{L}_F et \mathbf{L}_G , et d'autres résultats probabilistes concernant les espaces d'Orlicz de suites nous ont amené à cette conjecture.

Pour terminer, indiquons quelques directions possibles d'extension des méthodes utilisées. Il n'y a pas de difficulté à définir l'ultraproduit pour les structures suivantes :

- 1 E.V.T.L.C. munis d'une famille dénombrable | | | de semi-normes.
- 2 Algèbres de Banach.
- 3 Triplets (E, F, T), E, F Banach T opérateur borné : E → F.
- 4 Paires (E,T), T opérateur borné dans le Banach E.
- 5 E.V.T métriques
- 6 Espaces métriques etc...

A chaque structure $\boldsymbol{\mathcal{L}}$, on doit associer les sous-structures $S\boldsymbol{\mathcal{L}}$ et les sous-structures finiment engendrées Fin $(S\boldsymbol{\mathcal{L}})$, plus une notion convenable d'isométrie.

Le théorème général s'énonce alors ainsi :

Toute classe C de structures L qui est stable par sous-structure, isométrie et ultraproduit admet une caractérisation en termes de sous-structures finiment engendrées (caractérisation qu'il est facile d'écrire sous une forme comparable à celle du théorème 3 de l'exposé précédent).

Exemples:

1 - Soit $\mathfrak{D}(0,1)$ l'espace des fonctions indéfiniment dérivables sur (0,1), nulles aux bords. Alors la classe $S[\mathfrak{D}(0,1)]$ des sous-EVTLC de $\mathfrak{D}(0,1)$ est stable par ultraproduit.

Problème: Définissant $\mathfrak{D}(0,1)$ par les semi-normes $\|f\|_n^2 = \int_0^1 |f^{(n)}(x)|^2 dx$, trouver la caractérisation de $S[\mathfrak{D}(0,1)]$.

2 - Soit T un opérateur compact sur un espace d'Hilbert. Alors la classe S(H,T) des restrictions de T aux sous-espaces T-invariants est stable par ultraproduit [6].

Problème: Le résultat est-il vrai pour L^p?

- 3 Les classes $\mathbf{1}_{\mathbf{F}}$ F donnée, d'algèbres de Banach sont stables par ultraproduit [2].
- 4 Les classe SL^p des sous-espaces d'espaces L^p , p donné, $0 \le p < 1$ sont stables par ultraproduit [7].
- 5 Considérons des triplets (E,F,T). Supposons qu'ils forment un idéal normé d'opérateurs au sens de Pietsch ([5]). Alors si cet idéal est stable par ultraproduit, il est maximal au sens de [5]. En particulier l'idéal des opérateurs se factorisant par L^p est maximal. et ceci vaut pour toute classe d'opérateurs se factorisant à travers une classe, ellemême stable par ultraproduit.

BIBLIO GRAPHIE

- [1] BRETAGNOLLE, DACUNHA-CASTELLE, KRIVINE; Lois stables et espaces L^p . Annales 1HP (1966) p.231-266.
- [2] DACUNHA-CASTELLE, KRIVINE; Studia Math. à paraître.
- [3] BRETAGNOLLE, DACUNHA-CASTELLE; Formes linéaires aléatoires et plongements dans les Banach. Annales ENS, 1969.
- [4] BRETAGNOLLE, DACUNHA-CASTELLE; Suite de l'article précédent (à paraître)
- [5] S. KWAPIEN; Operators factorizing through L^p spaces. (à paraître)
- [6] E. LESQUOY; Ultraproduits d'opérateurs sur les Hilberts (à paraître)
- [7] M. SCHREIBER; Ultraproduits d'espaces L^p , $0 \le p < 1$. A paraître (Annales IHP).