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NOTES ON AN EXTENSION OF KRULL’S PRINCIPAL IDEAL THEOREM

by David EISENBUD (*)

Séminaire P. DUBREIL

(Algèbre) .

28e annee, 1974~75 ~ n° 20, 4 p. 15 avril 1975

In this note, we will propose a generalization of Krull’s principal ideal theorem

which we can prove to be correct, for example, for rings containing a field. We

will then sketch an application to the theory of determinantal ideals ; roughly

speaking, our theorem implies a more precise version of the theorems of MACAULAY

and EAGON on the heights of determinantal ideals. We also mention a speculative

connection between our conjecture and the intersection conjectures of SERRE and

PESKINE-SZPIRO. Details will appear elsewhere.

1. The generalized principal ideal theorem.

Throughout this paper, all rings will be assumed commutative and noetherian.

Krull’s principal ideal theorem [5] states that an element a in the maximal

ideal of a local ring R generates an ideal of height at most one (the apparently

sharper statement that the minimal primes all have height at most one follows tri-

vially by localization). Regarding a as a homomorphism R -~.> R , and noting that

the rank of R , as an R-module, is 1, one might be lead to conjecture that

something "similar" can be said about homomorphisms from an arbitrary module into

R . To be more precise, one needs first the right notion of the rank of a module.

Since we wish to work with homomorphisms to the ring, it is not unreasonable to re-

quire that an R-module M should have rank 0 if, and only if, 0 ~

As with all notions of rank, a module M should have rank $ k if, and only if,

its (k + 1)th-exterior power has rank 0 . These conditions uniquely specify a

notion of the rank of a module, which can be more simply put as follows :

Definition. - Let U be the set of nonzerodivisors of R . The rank of a fini-

tely generated R-module M is the minimal number of generators of M~ as an R-

module.

Of course, if R is a domain, this is the usual notion of rank. We can now state

our conjecture :

Generalized principal ideal conjecture. - Let R be a local ring with maximal

ideal J , and let M be a finitely generated R-module of rank n . Let

M~ ~ Hom(M , R) , 
’

and let cp be an element ef JM~ . Then the height of the ideal cp(M) is at most

n .

# This is a joint work of E. Graham Jr, and myself. Both authors are 
teful to the Sloan Foundation and the N.S.P’. for partial support,



It is easy to see that, if M = Rn , this conjecture becomes the version of the

Krull principal ideal theorem which states that the height of a proper n-generator

ideal is at most n .

We can prove a weakned form of the conjecture, in which ’’height’’ is replaced by

"depth", and we can prove the conjecture itself in many cases.

Recall that if I s R is an ideal, and N is a finitely generated R-module,

then depth ( I , N) is the length of a maximal N-sequence in I.

THEOREM 1. - Let R be a noetherian local ring with maximal ideal J . Let M

be a finitely generated R-module, and let ~p E 

(a) If N is a finitely generated R-module, then N) $ rank M .

(b) If R has (possibly not finitely generated) Cohen-Macaulay modules in the
sense of HOCHSTER [ 4], then

height cp(M) ~ rank M .

The extra hypothesis of (t) is known to be fulfilled if R contains a field, and

is conjectured to be true in general [ 4].

It is perhaps amusing to note that our conjecture can be reformulated as giving a

condition, in terms of the punctered spectrum, for an element of a module to be

part of a minimal system of generators :

Conjecture (second version). - Let (R , J) re a local ring of dimension d ,

and let M be a module of rank  d . Suppose that a is an element of M such

that, for every prime ideal P ~ J, a generates a free summand of M . Then a

is part of a minimal system of generators for M. 

2. Determinantal ideals.

One of the earliest generalizations of the principal ideal theorem was the theorem
of MACAULAY [6] that (for polynomial rings) the height of the ideal of p x p

minors of a p x q matrix, if the ideal is proper, is at most q - p + 1 . This

was generalized by EAGON in 1960, who showed (for a general noetherian ring) that
the height of the ideal of k x k minors of a p x q matrix, if the ideal is

proper, is at most (p - k + l)(q - k + 1) (There is a very elegant proof of this
in [ 3~). On the basis of the conjecture made in the last section, we can extend
this result to say something about what happens to the ideal of k x k minors when

an extra column is added to the matrix.

Before stating our result we remark on a result that can be proved by the tech-

nique of [ 3].

PROPOSITION. - Let 03C6 be a p x q matrix over a ring R , and suppose that the

(t + (l + 1) minors of cp are all 0 . Then the ideal generated by the l  l



minors of (p has height at most

Now suppose that R is local and that we adjoin a new column, with entries in

the maximal ideal, to a p x q matrix 03C6 , obtaining a p x (q + 1 ) matrix cp’ .

Suppose that the k x k minors of cp are all 0 , What can the height h of the

ideal of k x k minors of 03C6’ be ? Of course, it is contained in the ideal of

minors and also in the ideal generated by the p entries

of the new column, so one obtains a bound from the proposition :

The next theorem shows that one can do better (at least much of the time : ) :

THEOREM. - Suppose that R is a local ring satisfying the generalized principal

ideal conjecture. (For example, suppose that R contains a field.) Let (p be a

p x q mat rix ove r R who se k x k mino rs are all 0 , and let be a matrix

obtained from (p by adjoining a column whose entries are in the maximal ideal.

Then the height of the ideal of k x k minors l is at most p - k + 1 .

As a consequence of the theorem and the proposition, we can prove a result which

generalizes a "rigidity" theorem of BUCHSBAUM and which, in turn, genera-

lized the result that if n elements f ~ , ... , fn of a local ring generate an

ideal of height n , then any k of them generate an ideal of height k :

COROLLARY. - Suppose that R is a local ring satisfying the generalized princi-

pal ideal conjecture, and that 03C6 is a p x q matrix over R, with coefficients

in the maximal ideal, such that the ide al of k x k mino rs of (p has height

(p-k + l~~q ... k + 1~ , the largest possible value. Then for every 
and eve ry s x t submatrix cp of cp , the he ight of the ide al of l  l minors

of cp is

again the largest possible value.

In particular, minor of cp is 0 .

To see that the hypothesis about coefficients being in the maximal ideal are ne-

cessary for this, consider the following matrix over F[x , when F is a

field :

Here the height of the ideal of 2 x 2 minors is 2( = (3 - 2 + 1) , ~ut the
first 2 x 2 minor is 0 e
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3. A remark on intersection theory.

The remark is easy and speculative : Suppose that M and N are modules of

ranks m and n over a local ring (R, J) (containing a field, say). Suppose

that (p E and ~ E JN* , and write

Then the ideal X + Y can be written as (c~ , ~)(M 8 N) , so X + Y has height

at most m + n . This gives some hold on the "intersection theory" of ideals of the

form cp(M) . For example, if one could prove that for every prime ideal P of a

regular local ring R ~ J’ > there exists a module M with rank M = ht P and an

element cp e JM* with c~(M~ = P , then one could deduce Serre’s intersection theo-
rem ([7], ch. V, theorem 3).

REFERENCES

[1] BUCHSBAUM (D. A.) and RIM (D. S.). - A generalized Koszul complex, III., Proc.
Amer. math. Soc., t. 16, 1965, p. 555-558.

[2] EAGON (J. A.). - Ideals generated by the subdeterminants of a matrix, Thesis,
University of Chicago, 1961.

[3] EAGON (J. A.) and NORTHCOTT (D. G.). - Ideals defined by matrices and a cer-
tain complex associated with them, Proc. Royal Soc. London, Series A, t. 269,
1962, p. 188-204.

[4] HOCHSTER (M.). - Deep local rings (to appear).
[5] KRULL (W.). - Über eine Hauptsatz der allgemeinen Idealtheorie, Sitzungsbe-

richte Heidelberg Akad. Wiss., 1929, p. 11-16.

[6] MACAULAY (F. S.). - The algebraic theory of modular systems. - Cambridge, at
the University Press, 1916 (Cambridge Tracts in Mathematics and mathematical
Physics, 19).

[7] SERRE (J.-P.). - Algèbre locale - Multiplicités. - Berlin, Springer-Verlag,
1965 (Lecture Notes in Mathematics, 11).

(Texte reçu Ie 20 mai 1975)

David E ISENBUD

Department of Mathematics
Brandeis University
WALTHAM, Mass. 02154

(Etats-Unis)


