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HIERARCHIES OF APERIODIC LANGUAGES

by Janusz A. BRZOZOWSKI

[Univ. Waterloo, and (1974/75) Univ. Paris-VI and Paris-VII]

Seminaire P. DUBREIL

(Algebre)
28e annee, 1~74~~15, n° 19 ~ 11 p. 14 avril 1975

Abstract. - In recent years, considerable attention has been given to the family

of aperiodic languages, also known as star-free languages and noncounting regular

languages. Several interesting subfamilies of aperiodic languages have been studied

and characterized by the properties of the corresponding syntactic monoids. The

study of such families has been systematized by examining the position of each fa-

mily in certain natural hierarchies. This paper gives a brief survey of results in

this area.,

1. Introduction.

If A is a finite, non-empty alphabet, A (respectively A*) is the free semi-

group (respectively free monoid) generated by A. The empty word is denoted by 1 ,

and $ is the empty set. Any subset L of A* is a language. The length of a

word W e A~ is denoted by )w) . The cardinality of a set X is denoted card X.

The symbol means "is by definition~.

Given languages L, L’ c: A~ ~ the following are also languages : L u L’ (union),
L n L’ (intersection), L = A~ - L (complement),

L.L~ (w ; w = U e L, u’ e L’) (concatenation or product) ,
L L (the subsemigroup of A* generated by L ), and

L* =0394 Un0 Ln = L u 1 (the submonoid of A* generated by L ).
Let UA (or simply U when A is understood) be the family of all languages

over A. Evidently? ~ is a boolean algebra under union, intersection and com-

plement, and a monoid under concatenation.

Let == a = Al and let we Let S be the fami-

ly of all finite languages, and C~ ==~ (L c A* ; f 6 S~) the family of cofinite
languages.

For a given family X of languages, consider the following properties :

It is well known ([6~), [9]) that the family of rational or regular languages can



be defined as the smallest family containing E and satisfying (a), (c) and (d) ,
and that this family also satisfies (b)~ Aperiodic languages can be defined as the
smallest family containing ~ , and satisfying (a), (b) and (c). (For further
reading on aperiodic languages, see [ 3~, [’~ ~, [ 1 ~ ~, [ ~ 2 ~~ [ 15 ~, [ 16 ~. ~

In the study of aperiodic languages, it is useful to separate the closure under

boolean operations from the closure under concatenation. For any f amily ~ ~ U ,
denote by XB the boolean algebra generated by X , i. e, the smallest family con-

taining X and satisfying (a) and (b) . Similarly, XM denotes the monoid genera-

ted by X ,

2. Aperiodic languages over a one-letter alphabet.
For A = ~a~ , the family a a of aperiodic languages is particularly simple (we

use 03B1a for etc.) We have Ea = {(an}; n  0 , Define

One verifies that G = 3 u C and that B M = IJ . This follows because eacha a a a acofinite language L ~ C 
a 

can be written L = F u fl a* for some n > 0 and

F ~ Fa , and concatenation of languages over a one-letter alphabet is commutative.
This implies that G = d , I, e, a language over a one-letter alphabet is aperio-
dic if, and only if, it is either finite or cofinite.

If We start by closing 2 
a 

under Boolean operations, we find

Next note that

One verifies that (it u u ~ , from which it follows thata a a

Since obviously &#x26; Be a , we have G =(B =? B .a a a a a

These observations are summarized in Fig. l. For each inclusion, we provide an
example of a language which proves the inclusion is proper.

3. 

We now assume that A is fixed, and card A > 1 . We use S for E , etc. As
and B0 =0394 FMB = S (8 

since (for A = (a , b) ) the language (a , b~.a = $.a is but is
neither finite nor cofinite. Thus we proceed to define M1 =0394 (B M and B1 =0394 M1 B .
We will return to these families later. For now observe that 



since each cofinite language can be written L = F u for some n ~ 0 and

F 6 S . Hence L can be written as a union of products where each factor is either

A~ or it is 

If we close E under boolean operations first, we find

Thus is a finite boolean algebra with £ u A as the set of atoms. Note that

_ *~~ ° 
.

.- .. ,,

These properties are summarized in Fig.2.It.is seen that, except for the few ini-

tial differences, it is not important whether E is closed under B or M first,

since the two sequences coincide from ~3~ ono

4. The dot-depth hierarchy ~ 5 ~.

The sequence (Bi) of boolean algebras, defined below, is called the dot-depth

hierarchy. Let

For each aperiodic language L , there exists n > 0 such that L E Bn ; hence

~ =U n>0 n ’
The "position" of a language in the dot-depth hierarchy can be used as a measure

of its complexity. Def ine the dot-de th (or simply of a language L by

The depth d(L) corresponds to the minimum number of concatenation levels that

must be used to generate L from languages in ~~ . Also, ~~ can be used instead

since S MB = ~ 0 MB ; however, S appears to be a more natural starting

point (see fig. 3).

The question whether the dot-depth hierarchy is finite or infinite is open (for
card A > 1 ). It is known that, f or A = ~a , b , c) , the language

is of depth 2, i. e. ~i - ~ example over a two letter alphabet is

L2 = {ab , ba)* . It was shown in SIMON [ 18] that L2 ~ B1 , and in McNAUGHTON-
PAPERT [11] that L 2 E B2 .



An upper bound for d(L) has been found as follows [5]. Let n be the number of

states in the reduced deterministic finite automaton ~ recognizing L . Let

i (L) be the number of distinct states in input column a , a 6 A , of the state
a

table of ~ . Further, let

i(L) = max(i (L) ; a ~ A and i~(L) ~ n) .
Then d(L) $ i(L) + 1 .

This bound is by L above. On the other hand, let be

over A = M . One verifies that i(Ln) = n - 1 , although Ln is cofinite, and

d(Lj = 0 .

5. The finite-cofinite hierarchy [4J.

In the dot-depth hierarchy, (B == B0 MB , i. e. a language in B1 is a boolean

function of products of any number of factors from ~ . Thus only one level of
concatenation is required, but this concatenation is unlimited in the number of

factors. A finer measure of complexity is obtained by limiting the number of fac-

tors as follows. Let p =~ ~ B for n ~ 1 . Then

"1=~1~
A number of subfamilies of aperiodic languages that have been studied appear natu-

rally in the sequence (B~ == p ~ ~’ ~ ~ which we refer to as the finite-

cofinite hierarchy. We will also need : .

An alternate description of the p families is the following :

where A~ ’~ = ~A~ L ; L E etc. These claims are easily verified. One can also

show [ 4] that

Therefore p~~ = however p~~ ~ for all n ~ 1 [l8].

A language is definite ([l], [9], [l3’]) if, and only if, it is in reverse

definite ([1], [8]) if, and only if, it is in p2014 , generalized definite ([8],
[17]) if, and only if, it is in p~ , and locally testable [ll] if, and only if, it
is in P~ . The original definitions of these families of languages were somewhat
different; however the equivalence of definitions is easily proved [4~ and the

present formulation appears more natural. We reconsider these families later.



The statements about the finite-cofinite hierarchy are summarized in Fig. 4.

6. The alphabetic hierarchy ~ 18~.

The languages introduced here play a key role in the family of depth-one languages.

We introduce a family a 1,1 of languages (The reason for this notation is explai-

ned in Section 8.) such that, if L ~ 03B11,1 , the membership of a word x in L

can be determined solely by the set of letters appearing in x. Define

to be the "alphabet" of x E A* .

For x , y E A~ , let x ~ 
a 
y if, and only if, xa = ya . The relation z 

u 
is a

congruence of finite index on A# , there being one congruence class (~x~ ~ for
’ a

each subset of A . We have

Now define ~ ==~ ~~~! xej~)B . and let A} .
One verifies that a 

= (A* E A*)B . For technical reasons , we use the family
9 =0394 A* u A* E A* as a generating set for (y . Note that Sm c: Sm+1 for m  1,

and we will use the convention 8~ = ($) . Let i 
=~ ~~ B and y I 

== 8MB . We
find y 

= 9MB = LL~ 8~ B = a~ . and the sequence

will be called the alphabetic hierarchy. L  A* is O-alphabetic if L G 

and it i S m-alphabetic, m % 1 , if, and only if, i - i , i . Finally 
L

iS alPhabetic, if, and only if, L ~ Y1 .
an alternate description of a 

m, 1 is obtained by using the "shuffle 
" operator LJ

171. For W = a~ a~ ... a~ « A* ,

Let 88m = w ; w e A* and m} . One verif ies that 03B1m,1 = (A* [] Rm)B,
for and y = ~A # U ’~~B . 

’

Over a two-letter alphabet A = ~a , b) , the alphabetic languages can be viewed

as a generalization of finite-cofinite languages [2]. Let E"= ((a~(b~a ~b )
and a be the generalization of L and 88 , respectively. Let F~ be

the closure of the family ? under finite unions and let G‘~ = (L ; L ~ ~} .
Then it c an be shown that

Furthermore, the initial phenomena of Fig. 2 have their counterpart here, for



7. The locally-testable hierarchy (~ 4~ ~ ~ ’18 ~) .

It can be shown that the membership of a word x in a locally-testable language

L is determined solely by the first k - 1 letters of x , the last k - 1

letters of x and the set of words of length k that appear in x . Formally,

(respectively tk(x) ) is x , if ~x ~ ( .$ k , and it is the prefix (respecti-

ve ly suf f ix) of x of length k otherwise. Let

For x , y E A* and k > 0 , define the congruence

-- --

If lxi is the congruence class containing x , let 03B11,k 
=0394 {[x]k ; x e A*lB ,

be the family of k-testable languages. The reason for this notation will soon be

explained. Note however that it is consistent with that of section 6, 
because L

is 1-alphabetic if, and only if, L is 1-testable if, and only if, L G a I, 1 .
One verifies that ~i,k+1 and that T3 ~ l%i "i ,k .

If, in the definition (*) of ~k , we remove the 
condition mk (x) = mk(y) , we

obtain the family of k-generalized-definite languages which we denote by 

One verifies that 03B22 = Uk1 03B10,k .

8 . Simon’s depth-one hie rarchy [ 1 8 ] .

Roughly speaking, the membership of a word x in a language L of depth I can

be determined by testing fk-1(x) , tk-1(x) and the set of m-tuples of

words of length k that appear in x . Thus depth-one languages are generaliza-

tions of both the k-textable and m-alphabetic languages; the locally testable

and alphabetic hierarchies turn out to be "orthogonal".

Let v = (w1 , ... , wm) be an m-tuple of Words of length k . ve say that v

occurs in x if, and only if, there exist words u1 ,... , v1 ,... , vm such

that |u1|  |u2|  ...  |um| and xi = ui wi vi , for i = 1 , ... , m . Let.

m,k(x) = {W|W = (w1,...,wm) , |w1| =...= |wm| = k and W occurs in x} .

By convention 0,k = £ for all k z i . Note that m,k(x) = § if, and only

if, )x )  m + k - I .

For X , Y G A* , m  ° , k % I define X Y if, and only if ’

- - - 

The relation is a congruence of finite index on A* . Let



One verifies that this is consistent with the previous definitions.

The hierarchy defined is illustrated in Fig. 4, where y~ = U~ 
and (one verifies that) P?~ = for m ~ 1 (The case of ~2 is some-

what degenerate). All the hierarchies shown are known to be infinite.

9. Syntactic monoids.

For L ~ A* the syntactic congruence, ==- , is defined by x ==- Y if, and only

if, for all u, v e A* , (u x v ~ L) ====> (uyv e L) . The quotient monoid 
is called the syntactic monoid H- of L , and A /- is the syntactic semigroup,

~L-
It is well-known that L is rational (or regular) if, and only if, M- is fi-

nite. It has been shown by SCHUTZENBERGER ([15], [l6]) that L is aperiodic if,

and only if, M- is group-free, (contains no groups other than the trivial one-

element groups).

A number of families of languages in Simon’ s hierarchy have been characterized by

the properties of their syntactic monoids. In this connection, the alphabetic

hierarchy plays a key role. The following is known [l8] :

(l) L ~ = if, and only if, M~ = 1 .

(2) L ~ Q~ 1~1 ~ if, and only if, is idempotent and commutative.

(3) L e Y if, and only if, M~ is 15-trivial, i. e. for all m, m’ ~ M-

(ML mML = ML m’ Mj implies (m = m’) .

These properties appear to carry over to the finite-cofinite hierarchy as follows:

It L 
i 

if, and only if, ML has property P " seems to correspond to
" L e if, only if, for each the 

has property pit.

The following evidence supports this statement : i 
’

(l~) L ~ p~ if, and only if, e S~ e = e ([4]. [l4]. [l9]).

(2~) L 6 p.. if, and only if, e S- e is idempotent and commutative (f4~ ~10]t

[19], [20], [21]).

(3*) If Le B1 , then e SL e is J-trivial [l8].

As can be seen, the results are quite fragmentary, and the proofs of these results

are quite complex. This approach appears to be very fruitful not only for clas-

sifying languages, but also monoids. For a more detailed account of the relation-

ship between languages and monoide, see [7].

For the sake of brevity, we have not touched upon the relationship between ape-

riodic languages and finite automata. There exist also characterizations of the fa-

milies of depth-one languages by the properties of the corresponding finite auto-



mata. We refer the reader to [18].

1 : Aperiodic languages over a one-letter alphabet** o ’~ 
* ~x~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fig. 2 : Initial families for card A > 2



Fig. 3 : The dot-depth hierarchy

Fig. 4 : The finite-cofinite hierarchy



Fig. 5 : Simon s depth-one hierarchy
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