SÉMINAIRE DUBREIL. ALGÈBRE ET THÉORIE DES NOMBRES

YVES MATRAS

T-opérateurs sur un groupoïde

Séminaire Dubreil. Algèbre et théorie des nombres, tome 26 (1972-1973), exp. n° 6, p. 1-6 http://www.numdam.org/item?id=SD_1972-1973_26_A6_0

© Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1972-1973, tous droits réservés.

L'accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

T-OPÉRATEURS SUR UN GROUPOÏDE

Yves MATRAS

 Γ étant un groupoïde multiplicatif, nous appellerons <u>transformation</u> de Γ une application de Γ dans lui-même. L'ensemble des transformations de Γ sera noté $\alpha(\Gamma)$.

<u>Définition</u>. - Un élément f de $\alpha(r)$ vérifiant

f(xf(y)) = f(x) f(y) pour tout x et tout y de r

sera appelé T-opérateur à gauche sur Γ, et leur ensemble sera désigné par T. Exemples.

- (a) Toute translation à gauche de Γ (c'est-à-dire toute transformation f de Γ telle que f(xy) = f(x) y pour tout x et tout y de Γ) est un élément de T.
- (b) Si $a \in \Gamma$, la transformation μ_a de Γ (définie par $\mu_a(x) = a$ pour tout x de Γ) est dans T si, et seulement si, $a = a^2$.
- (c) Soient $A \subseteq \Gamma$ et $u \in \Gamma$ tels que xa = u pour tout x de Γ et tout à de A. Toute transformation f de Γ , vérifiant f(u) = u et $f(\Gamma) \subseteq A$, est un élément de T.

1. Composition des T-opérateurs et T_familles.

En général T n'est qu'un groupoïde partiel : le composé de deux éléments de T peut ne pas être dans T . On a cependant toujours le résultat suivant.

PROPOSITION. - Soient f et g dans T, et λ une translation à gauche de Γ . Alors :

- (i) $f \circ \lambda \in T$.
- (ii) $f \circ g = g \circ f$ implique $f \circ g \in T$.
- (iii) Si $f(\Gamma)$ est contenu dans $g(\Gamma)$, on a $g(xf(y)) = g(x) f(y) \quad pour tout \quad x \quad et \ tout \quad y \quad de \quad \Gamma ;$

de plus, $f \circ g \in T$.

Définition. - Une famille $\{f_u\}_{u\in U}$ d'éléments de T sera appelée T_g -famille sur Γ si $f_u(xf_v(y)) = f_u(x) f_v(y)$ pour tout x et pour tout y de Γ , tout u et tout v de U. Si les f_u sont deux à deux distincts, on parlera de T_g -ensemble sur Γ .

Une condition suffisante pour que $\{f_u\}_{u\in U}$ soit une T_g -famille sur Γ est que $f_u(\Gamma)=f_v(\Gamma)$ pour tout u et tout v de U.

La propriété d'être une T_g -famille est conservée par isomorphisme : soit ζ un isomorphisme d'un groupoïde Γ sur un groupoïde Γ' , et $\{f_u\}_{u\in U}$ une T_g -famille sur Γ . Alors $\{\zeta$ of u o $\zeta^{-1}\}_{u\in U}$ est une T_g -famille sur Γ' o L'étude du groupoïde partiel T peut être facilitée par les résultats suivants.

THÉORÈME.

- (i) La famille des Τg-ensembles sur Γ est U-inductive.
- (ii) Tout élément de T est contenu dans un T ensemble maximal sur Γ .
- (iii) Le sous-demi-groupe de $\alpha(\Gamma)$, engendré par un α_g -ensemble sur α_g -ensemble s
- (iv) $\underline{\text{Un}}$ $\underline{\text{T}}_g$ -ensemble maximal sur $\underline{\Gamma}$ est un sous-demi-groupe du groupoïde partiel $\underline{\text{T}}$.

2. Comportement des T-opérateurs à gauche vis-à-vis des éléments zéro.

Soit f un élément de T, et soit z un zéro à gauche de Γ . Alors f(z) est un idempotent de Γ , et $f(\Gamma)$ est contenu dans $\{x \in \Gamma : f(z) | x = f(z)\}$. Supposons de plus que z soit un zéro bilatère, et notons-le 0. Alors,

$$(f(0) \neq 0) \Rightarrow (0 \notin f(\Gamma))$$
.

D'autre part, $A = \{f_u\}_{u \in U}$ étant une T_g -famille sur Γ , on a $f_u(0) \neq 0$ pour tout u de U, ou bien $f_u(0) = 0$ pour tout u de U. Dans ce dernier cas, $A \cup \{\mu_0\}$ est une T_g -famille sur Γ et, par suite, tout T_g -ensemble maximal sur Γ , contenant un élément qui laisse fixe 0, contient μ_0 .

3. Cas d'un zéro bilatère adjoint extérieurement.

Soit Γ un groupoïde sans zéro bilatère. Posons $\overline{\Gamma} = \Gamma \cup \{0\}$, et considérons un élément \overline{f} de \overline{T} (\overline{T} étant l'ensemble des T-opérateurs à gauche sur $\overline{\Gamma}$). On peut parler de la restriction f de \overline{f} à Γ si, et seulement si, $\overline{f}(\Gamma) \subseteq \Gamma$. Ceci se produit uniquement dans deux cas.

Premièrement, si $\overline{f}(0) \neq 0$, et dans ce cas $f \in T$. La réciproque n'est pas vraie en général : on ne peut pas toujours prolonger à $\overline{\Gamma}$ un élément f de T de façon que l'image de 0 ne soit pas 0. Cependant on peut énoncer :

Si $f \in T$ et si e est un élément neutre à droite de Γ vérifiant

$$f(\Gamma) \subseteq \{x \in \Gamma ; ex = e\}$$

la transformation \overline{f} de $\overline{\Gamma}$, définie par

$$\overline{f}(x) = f(x)$$
 si $x \in \Gamma$ et $\overline{f}(0) = e$,

est dans T.

Deuxièmement, une transformation \overline{f} de $\overline{\Gamma}$ sera dite <u>restrictible</u> si

$$(\overline{f}(x) = 0) \Leftrightarrow (x = 0)$$
.

Alors un élément f de $\mathfrak{A}(\Gamma)$ est un T-opérateur [resp. une translation] à gauche sur Γ si, et seulement si, il est la restriction à Γ d'un T-opérateur [resp. une translation] à gauche restrictible sur Γ .

4. Une configuration particulière.

Considérons le problème suivant : soit à caractériser les éléments de $\overline{\Gamma}$, ensemble des T-opérateurs à gauche sur le quotient $\overline{\Gamma} = \Gamma/\Delta$ d'un groupoïde Γ par un idéal premier Δ de Γ . Nous allons définir un certain type de transformation de Γ qu'il sera nécessaire et suffisant de caractériser pour résoudre le problème.

Notons \overline{x} la classe modulo Δ d'un élément x de Γ . Si $x \notin \Delta$, on a $\overline{x} = \{x\}$. Si $x \in \Delta$, on a $\overline{x} = \Delta$ (considéré comme l'élément zéro de $\overline{\Gamma}$, Δ sera noté O). On dira qu'un élément f de $\mathcal{C}(\Gamma)$ est réductible par Δ si $\overline{x} = \overline{y}$ implique $\overline{f(x)} = \overline{f(y)}$, auquel cas on peut définir un élément \overline{f} de $\mathcal{C}(\overline{\Gamma})$ par $\overline{f(x)} = \overline{f(x)}$. On appellera \overline{f} la réduction de f par Δ . L'ensemble des éléments de $\mathcal{C}(\Gamma)$ réductibles par Δ est

$$\alpha_{\Delta}(\Gamma) \cup (\bigcup_{\mathbf{a} \in \Gamma \setminus \Delta} \alpha_{\mathbf{a}}(\Gamma)) = \mathcal{R}_{\Delta}(\Gamma)$$
,

où
$$\alpha_{\Lambda}(\Gamma) = \{f \in \alpha(\Gamma) ; f(\Delta) \subseteq \Delta\}$$
 et $\alpha_{A}(\Gamma) = \{f \in \alpha(\Gamma) ; f(\Delta) = \{a\}\}$.

Notons que deux éléments f et g de $\Omega_{\Delta}(\Gamma)$ ont même réduction par Δ si, et seulement si, $\Delta_{\mathbf{f}} = \Delta_{\mathbf{g}}$, avec $\Delta_{\mathbf{f}} = \{\mathbf{x} \in \Gamma \; ; \; \mathbf{f}(\mathbf{x}) \in \Delta\}$. T_{Δ} désignera l'ensemble des éléments f de $\mathfrak{A}_{\Delta}(\Gamma)$ vérifiant les conditions :

- (M1) $\Delta_{\mathbf{f}} f(\Gamma \setminus \Delta_{\mathbf{f}}) \subseteq \Delta_{\mathbf{f}}$, et
- (M2) f(xf(y)) = f(x) f(y) pour tout x et tout y de $\Gamma \setminus \Delta_{\mathbf{f}}$.

THÉORÈME. - Un élément f de $\mathfrak{A}(\overline{\Gamma})$ qui laisse le zéro fixe est dans \overline{T} si, et seulement si, f est la réduction par Δ d'un élément de T_{Δ} .

Cas particulier des translations. - Soit \Box'_Δ l'ensemble des éléments f de \Box'_Δ vérifiant les conditions :

- (T1) Δ_{ρ} est un idéal à droite de Γ , et
- (T2) f(xy) = f(x) y pour tout x de Δ_f et tout $y \notin \Delta$.

Alors un élément λ de $\mathfrak{A}(\overline{\Gamma})$ est une translation à gauche de $\overline{\Gamma}$ si, et seulement si, λ est la réduction par Δ d'un élément de $T_{\Lambda}^{!}$.

5. Structure de l'ensemble des T-opérateurs sur un groupe et sur un groupe avec zéro.

Soit G un groupe multiplicatif d'élément neutre e . Soit \overline{G} le groupe avec zéro construit sur $G: \overline{G} = G \cup \{0\}$. L'ensemble des T-opérateurs à gauche sur G (resp. \overline{G}) sera désigné par T (resp. \overline{T}).

Dans [1], nous avons caractérisé les éléments de \mathbb{T} et $\overline{\mathbb{T}}$; rappelons ce résultat.

Définition. Un système à gauche sur \overline{G} (resp. G) est un couple (F, I), où F est un sous-groupe de G et I un ensemble non vide et non redondant (resp. non vide, non redondant et complet) de représentants des classes à gauche module F. L'associée de (F, I) est la transformation f de G (resp. \overline{G}), définie par $f(x) = i^{-1}x$ avec $i \in I$ et iF = xF (resp. $f(x) = i^{-1}x$ s'il existe i dans I tel que iF = xF, et f(x) = 0 sinon). Un système à gauche sur G (resp. \overline{G}), différent de (F, I), ne peut avoir f comme associée. F sera le but de f, G is sera le coeur de G of G is existe, pointe de G of G is existe, pointe de G of G is existe, pointe de G of G is existe.

THEOREME.

- (i) Une transformation f de G est dans T si, et seulement si, ε : est l'associée d'un système à gauche sur G.
 - (ii) μ_0 et μ_0 sont dans \overline{T} .
- (iii) Une transformation f de \overline{G} , différente de μ_0 et de μ_0 , est dans \overline{G} si, et seulement si, elle est l'associée d'un système à gauche sur \overline{G} .
 - (a) Structure du groupoïde partiel T.

Nous poserons $\Sigma=\overline{T}\{\mu_e~,~\mu_0\}$. F étent un sous-groupe de G , Σ_F représentera l'ensemble des éléments de Σ ayant F pour but. Le théorème suivant fourmit une première décomposition de \overline{T} .

THÉORÈME 1.

- (i) $\{\mu_e\}$ est un T_g -ensemble maximal sur \overline{G} .
- (ii) Mis à part $\{\mu_e\}$, les Γ_g -ensembles maximaux sur G sont, et ne sont sur les Σ_F \cup $\{\mu_O\}$. Les Σ_F sont deux à deux disjoints, et leur union, lorsque F parcourt la famille des sous-groupes de G, est Σ .

Choisissons un sous-groupe $\, {\mathbb F} \,$ de $\, {\mathbb G} \,$, et étudions $\, \Sigma_{\overline{\sigma}} \,$.

Puisque $\Sigma_F \cup \{\mu_0\}$ est un T_g -ensemble maximal sur \overline{G} , c'est un sous-demi-groupe du groupoïde partiel \overline{T} . Il est clair que μ_0 est le zéro de ce demi-groupe. Appelons Φ_F l'ensemble des éléments de Σ_F n'ayant pas de pointe. Posons $\Psi_F = \Sigma_F \setminus \Phi_F$, Si $\sigma \in \Sigma$, on désignera par T_σ le coeur de σ , et T_σ représentera $\sigma^{-1}(0)\setminus\{0\}$. Si $x\in G\setminus Z_\sigma$, on dénotera par T_σ l'unique élément de T_σ o xF. En particulier T_σ sera la pointe de σ , si elle existe.

THEORÈME 2. - Soient $\sigma \in \Sigma_F$, $\varphi \in \Phi_F$, $\psi \in \Psi_F$. Alors:

- (i) $\varphi \circ \sigma = \mu_0$; $Z_{\psi \circ \sigma} = Z_{\sigma}$; $I_{\psi \circ \sigma} = I_{\sigma} e_{\psi}$.
- (ii) ψ est idempotent si, et seulement si, $e_{\psi} = 9$.
- (iii) ψ $\Phi_{\mathbf{p}} = \Phi_{\mathbf{p}}$; ψ $\Psi_{\mathbf{p}} = \Psi_{\mathbf{p}}$.

THEORÈME 3. - L'ensemble Π_F des idempotents de Ψ_F est un zéro demi-groupe à droite, et Ψ_F est un groupe droit isomorphe à $\Pi_F \times \mathbb{F}$.

L'isomorphisme intéressant est en l'ait colui qui transforme \mathbb{Y}_F , ψ en F (avec $\psi\in\Pi_F$). Il est défini par

$$(\psi^{\scriptscriptstyle 1} \, \circ \, \psi \in {\mathbb{Y}}_{F} \, \circ \, \psi) \, \longrightarrow \, (\mathrm{e}_{\psi^{\scriptscriptstyle 1}}^{-1} \, \in \, F) \ .$$

Remarque. Considérons l'équivalence $\mathcal R$ définie sur Ψ_F par ψ $\mathcal R$ ψ ' si, et seulement si, $Z_{\psi} = Z_{\psi}$. Soit π un idempotent de Ψ_F . Alors, d'après le théorème 2(i), Ψ_F on ne peut être à cheval sur deux classes modulo $\mathcal R$. Chacune de ces classes est donc un groupe droit dont les sous-groupes maximaux sont isomorphes à F. C'est le cas, in particulier, pour la classe formée de tous les éléments restrictibles (Cf. [1]) de Ψ_F , classe que nous noterons Ψ_F .

THEORÈME 4. - Soit $\gamma \in \overline{T}$ et σ , $\sigma' \in \Sigma$. Alors :

- (i) $\mu_0 \cdot \gamma = \mu_0$.
- (ii) $\gamma \circ \mu_0 = \mu_0 \quad \underline{\text{si}} \quad \gamma \neq \mu_e$.
- (iii) $\mu_e \circ \gamma = \mu_e$.
- (iv) $\gamma \circ \mu_e \in \overline{T}$ si, et seulement si, $\gamma \in \Pi_F$ et, dans ce cas, $\gamma \circ \mu_e = \mu_e$.
- (v) $\sigma \cdot \sigma^{\dagger} \neq \mu_{\sigma}$.
- (vi) $\sigma \circ \sigma' = \mu_0$ si, et seulement si, $F_{\sigma'} \subseteq Z_{\sigma'}$ et, dans ce cas, σ n'a pas de pointe ($F_{\sigma'}$, représente le but de σ').
- (vii) Soient $\psi \in \Psi_{\overline{F}}$ et $\sigma \in \Sigma_{\overline{I}}$, avec $H \subseteq F$. Alors, si $e_{\psi} \notin H$, on a $\psi \circ \sigma \notin \overline{T}$; si $e_{\psi} \in H$, on a

$$\psi \circ \sigma \in T \text{ aver } Z_{\psi \circ \sigma} = Z_{\sigma} \text{ et } I_{\psi \circ \sigma} = I_{\sigma} e_{\psi} \text{.}$$

(b) Structure du groupolide partiel T .

Toutes les notations précédentes sont conservées excepté que, dans ce qui suit, μ_e désignera la transformation de G qui applique tout élément de G sur e .

THEOREME 5. - Les T -ensembles maximaux sur G sont, et ne sont que les ensembles $\Xi_F = \{\xi \in \Xi : \xi(G) = F\}$ lorsque F parcourt la famille des sous-groupes de G. Ces Ξ_F sont deux à deux disjonts et recouvrent T.

Remarquons que $\Xi_{\{e\}} = \{u_e\}$ et que Ξ_G coîncide avec l'ensemble des translations à gauche de G .

Tout élément σ de T est la restriction à G d'un élément restrictible $\overline{\sigma}$ de Σ , et l'application $\overline{\sigma} \to \sigma$ est un isomorphisme de groupoïdes partiels de Ψ sur T, où Ψ est l'ensemble des éléments postrictibles de Σ . En particulier, Ξ_F est l'image isomorphe de $f_{F,r}$: c'est un groupe droit isomorphe à $\Theta_F \times F$, où Θ_F représente l'ensemble des éléments de Ξ_F qui ont e pour pointe. De la même

manière que pour G, en montre que :

- (i) $\mu_e \circ \gamma = \mu_e$ pour tout γ do T.
- (ii) $\gamma \circ \mu_{\mathbf{p}} \in T$ si, et seulement si, γ est idempetent et, dans ce cam, on a γ • μ_e = μ_e •

Les idempotents de T sont caractérisés par une pointe égale à e . Enfin, si Ç et ξ^i sont dans Ξ_F , on a $\Xi_{\xi \circ \xi^i} = \Xi_{\xi^i} \cdot e_{\xi^i}$

Nous allons maintenant compléter l'étude de la structure de T en énonçant ins condition nécessaire et suffisante pour que le composé de deux éléments de T soit dans T.

Soient α et β ... ins T, respectivement associés aux systèmes à gauche (F, I) et (H , J) sur G , Soit Hp la réunion des classes à gauche modulo F qui coupent H . Posons

$$I_H = I \cap H_F \text{ et } I_H^0 = I \cap H$$
.

Pour un élément donné \mathbf{x} de \mathbf{G} nous noterons $\mathbf{j}_{\mathbf{x}}$ l'unique élément de $\mathbf{J} \cap \mathbf{x} \mathbf{H}$, et i x l'unique élément de I $_{0}$ (i_{x}^{-1} x). Enfin nous noterons π l'équivalence sur G, définie par x π y si, et seulement si, j_x $i^x = j_v$ i^y . On peut alors énoncer le théorème suivant.

THEOREME 6. - α • $\beta \in T$ si, et seulement si, les deux conditions suivantes sont réalisées:

- (1) N est régulière à gaucho.
- (2) $JI_{H} = JI_{V}^{()}$.

Lorsque c'est le cas, le système à gauche sur G, cont α, β est l'associée. est $(\mathfrak{N}(e), \operatorname{JI}_{H})$, cù $\mathfrak{N}(e)$ est la classe de e modulo \mathfrak{N} .

Cas particuliers.

- (1) Si $I_H = I_H^0$, $\alpha \circ \beta$ est un élément de T associé à $(H \cap F, JI_H)$. La réciproque est d'ailleurs vraie : si α , $\beta \in \mathbb{T}$ avec α , $\beta(G) = H \cap F$, alors on a $I_{H} = I_{H}^{O}$.
 - (2) Si $F \subseteq H$, alors $\alpha \cdot \beta \in T$, et est associée à (F, JI_H) .
 - (3) Si $I_H^0 = \emptyset$, $\alpha \circ \beta$ n'est pas dans T.
 - (4) Si H⊆F et e f H . Blown ~ β niest pas dans T .
 - (5) Si $H \subseteq F$ et $e_{\alpha} \subseteq H$ dors $\alpha \rightarrow \beta$ est dans T, et est associée à (H, Je_{α}) .

BIBLIOGRAPHIE

[1] MATRAS (Y.). - Sur l'équation femutionnelle f(xf(y)) = f(x) f(y), Bull. Acade Pero, Page. Cl. Soc., Série 5, t. 55, 1969, p. 731-751,

Yves MATRAS Ta Graema Son som transporter