SÉMINAIRE DUBREIL. ALGÈBRE ET THÉORIE DES NOMBRES

JOHN A. READ

L-sous-groupes compressibles du groupe-réticulé A(S)

Séminaire Dubreil. Algèbre et théorie des nombres, tome 25, n° 1 (1971-1972), exp. n° 6, p. 1-4

http://www.numdam.org/item?id=SD 1971-1972 25 1 A6 0>

© Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1971-1972, tous droits réservés.

L'accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

24 janvier 1972

L-SOUS-GROUPES COMPRESSIBLES DU GROUPE-RÉTICULÉ A(S)

par John A. READ

Soit S un ensemble totalement ordonné, et soit A(S) le groupe-réticulé des permutations croissantes de S . Si s \in S et $g \in$ A(S), l'intervalle de s par g est un élément de A(S), et on l'appelle g comprimé hors de l'intervalle g est un élément de A(S), et on l'appelle g comprimé hors de l'intervalle g est g es

$$\bigwedge_{i \in I} \bigvee_{j \in J} a_{ij} = \bigvee_{f \in I} \bigwedge_{i \in I} a_{i,f(i)}$$

lorsque les V et les A écrits existent.

Une conséquence facile de ce résultat est que chaque ℓ -sous-groupe stabilisateur (définition 5), d'un ℓ -sous-groupe compressible G de A(S), est un ℓ -sous-groupe fermé de G (définition 4).

<u>Définition</u> 1. - Soient h et g éléments du groupe-réticulé G . L'élément h est subordonné à g , ce qui s'écrit hsg , si, lorsque $|g| = Vg_{\alpha}$ pour un ensemble $\{g_{\alpha} \mid \alpha \in A\}$ d'éléments positifs de G , on a $|h| \leqslant g_{\alpha}$ pour un $\alpha \in A$, $(|g| = g \vee g^{-1})$.

THÉORÈME (E. C. WEINBERG [2]). - Le groupe-réticulé G est complètement distributif si, et seulement si, $\Phi(G) = e$, où $\Phi(G) = g \in G$ hsg implique h = e.

LEMME 1. - Soit G un groupe-réticulé, et soit e < h \in G tel que $\{k \in G \ | \ e < k < h\}$

soit totalement ordonné. (On dit que h est basique). On a h $\notin \Phi(G)$.

Si $\{k \in G \mid e < k < h\} = \emptyset$, évidemment h est subordonné à h .

Notation. - On écrit

$$Z = \{..., -2, -1, 0, 1, 2, ...\}$$
, $Z^+ = \{0, 1, ...\}$ et $Z^- = \{..., -2, -1, 0\}$.

Définition 2. - Soit G un ℓ -sous-groupe d'un A(S). Si $\{h,g\} \subseteq G$ est tel que $xh^n \leqslant xg$ pour chaque $x \in S$ et chaque $n \in Z^+$, on dit que h est <u>infiniment petit</u> par rapport à g, et on écrit $h \ll g$.

LEMME 2. - Soit G un ℓ -sous-groupe d'un A(S), et soit $h \in G$. Si, pour $\{x, y \mid x \neq y\} \subseteq S$, on a $xh \geqslant x$ et $yh \leqslant y$, alors on a $x \notin h_y$ et $y \notin h_x$.

 $\begin{array}{c} \underline{\text{D\'emonstration}}. \text{ - Dans le cas } x < y \text{ , on a } yh \leqslant y \text{ , } yh^n \leqslant y \text{ pour } n \in \underline{Z}^+ \text{ , et} \\ \text{donc } xh^n < yh^n \leqslant y \text{ pour chaque } n \in \underline{Z}^+ \text{ . Si } n \in \underline{Z}^- \text{ , } xh^n \leqslant x < y \text{ , et donc} \\ y \not\in h_{_{\underline{X}}} \text{ .} \end{array}$

Dans le cas y < x, on a $yh^n \geqslant y$ pour chaque $n \in \mathbb{Z}^-$, et donc $xh^n > yh^n \geqslant y$ pour chaque $n \in \mathbb{Z}^+$. Si $n \in \mathbb{Z}^+$, $xh^n > y$ pour chaque $n \in \mathbb{Z}^+$, et donc $y \notin h_x$. De la même façon, $x \notin h_y$.

<u>Définition</u> 3. - Soit $S(g) = \{x \in S \mid xg \neq x\}$. On dit que g est comprimé si S(g) est exactement un intervalle d'un $s \in S$ par g.

LEMME 3. - Soit G un ℓ -sous-groupe compressible d'un A(S), et soit e $\leqslant g \in G$ tel que g soit comprimé. Si $k \in G$ est tel que sk > s et tk = t pour

$${s, t} \subseteq S(g),$$

<u>Démonstration</u>. - On peut supposer que yk = y pour $y \notin k_s$ et $k \leqslant g$ (Sinon prendre $k \land g$ comprimé hors de $(k \land g)_s$ au lieu de k). En conséquence du lemme 2, $k \geqslant e$. Supposons s < t. Si t < s, la démonstration est presque la même.

Par le lemme 2, $t \notin k_s$, et on a un $n \geqslant 0$ $(sg^0 = s)$ tel que $sg^n \in k_s$, mais $sg^{n+1} \notin k_s$. On a $sg^n g^{-1} \in k_s$, ou $sg \notin k_s$ et $sg^{-1} \notin k_s$; dans un tel cas, ou e < k << g, ou il y a $z \in k_s$ tel que $(z, zg) \subseteq k_s$, et dans ce dernier cas, $e < k \wedge g^{-1} kg << g$.

Donc, on suppose que $sg^ng^{-1} \in k_s$. Soit $x = (sg^n)(g^{-1}kg)^{-1}$. Montrons que $x \in k_s$. Si $sg^ng^{-1} \in k_s$, on a, parce que $k \le g$,

$$sg^{n} g^{-1} \leq sg^{n} (g^{-1} kg)^{-1}$$
.

On a aussi g^{-1} k^{-1} $g \le e$, donc $sg^n(g^{-1}$ $kg)^{-1} \le sg^n$, donc $x \in k_g$ par convexité. Donc, xk > x , et on a, pour un $m \in Z^+$,

$$x(g^{-1} kg) = sg^n < xk^m$$
.

Avec le point sg^{n+1} , on a $(sg^{n+1})g^{-1}kg > sg^{n+1} = sg^{n+1}k^m$.

Pour le troisième point sg^{n+2} , on a $(sg^{n+2})g^{-1}kg = sg^{n+2} = sg^{n+2}k^m$.

Donc, par le lemme 2, l'intervalle de sg^{n+1} par $(g^{-1} kg)k^{-m}$ est contenu dans (x, sg^{n+2}) , lequel est contenu dans (sg^{n-1}, sg^{n+2}) parce que $x=[sg^n]g^{-1}k^{-1}g$ et $k^{-1}g > e$.

Soit $\rho=g^{-1}$ kg k^{-m} comprimé hors de $(g^{-1}$ kg k^{-m})sgⁿ⁺¹. Donc, $\rho>e$. Ou $\rho\ll g$ et nous définissons $h=\rho$, où il y a un $z\in(sg^{n-1}$, $sg^{n+2})$ tel que (z, $zg)\subseteq\rho_z$; dans un tel cas $g\rho g^{-1}$ \wedge $\rho>e$, et est tel que

$$(g\rho g^{-1} \wedge \rho)_z \subseteq (sg^{n-1}, sg^{n+1})$$
.

De la même façon, ou $g\rho g^{-1} \wedge \rho \ll g$ et nous définissons $h = g\rho g^{-1} \wedge \rho$, ou il y a $y \in S$ et

$$f = g(g\rho g^{-1} \wedge \rho)g^{-1} \wedge (g\rho g^{-1} \wedge \rho) > e$$
,

tel que yf > y et f $_y \subseteq (sg^{n-1}$, $sg^n)$. Dans ce dernier cas, f $<\!\!< g$, et nous définissons h=f .

THÉORÈME 2. - Chaque &-sous-groupe compressible de A(S) est complètement distributif (Donc A(S) est complètement distributif).

<u>Démonstration</u>. - Soit G un *l*-sous-groupe compressible de A(S) . Si chaque e < h \in G , qui est comprimé, n'est pas un élément de $\Phi(G)$ = e , car $\Phi(G)$ est convexe ([1], corollaire 3.7), et G est compressible, et par conséquent, G est complètement distributif d'après le théorème 1.

Soit $e < g \in G$ tel que g soit comprimé. Par le lemme 3, g est basique, et $g \not \in \Phi(G)$ par le lemme 1, ou il y a $e < k \in G$ qui est comprimé, tel que e < k < g. De la même façon, k est basique, et $g \not \in \Phi(G)$, ou il y a $e < h \in G$ qui est comprimé tel que h << k. Soit $t \in S(h)$, $x = tk^{-2}$. On a $h_t \subseteq (x, xg)$.

De la même façon, h $\notin \Phi(G)$ et g $\notin \Phi(G)$, où il y a f << h qui est comprimé, et un point y \in h, tel que $S(f) \subseteq (y$, yh).

Montrons que f est subordonné à g . Soit $g = Vg_{\alpha}$, où $\{g_{\alpha} > e \mid \alpha \in A\} \subseteq G$. Soit $d = hfh^{-1}$.

Si $z \notin (yh^{-1}, y)$, $zd^{-1}g = zg \geqslant zg_{\alpha}$ pour chaque α .

Supposons $z \in (yh^{-1}, y)$ et $zg_{\alpha} < yh$ pour chaque α . Parce que $zd^{-1} \in (x, xg)$, et donc zd^{-1} $g \in (xg, xg^2)$, on a $zg_{\alpha} < yh < xg < zd^{-1}$ g. Donc $g_{\alpha} < d^{-1}$ g pour chaque $\alpha \in A$, qui implique que $vg_{\alpha} < d^{-1}$ g < g, qui n'est pas possible.

Donc, pour un $\alpha \in A$ et un $z \in (yh^{-1}, y)$, $zg_{\alpha} \geqslant yh$, et on a, pour $t \in (y, yh)$, $tg_{\alpha} \geqslant zg_{\alpha} \geqslant yh \geqslant tf$, et donc $f \leqslant g_{\alpha}$, qui implique que f est subordonné à g, c'est-à-dire G est complètement distributif.

Définition 5. - Soit G un l-sous-groupe d'un A(S). On dit que

$$G_{\mathbf{g}} = \{ g \in G \mid sg = s \}$$

est un l-sous-groupe stabilisateur de G .

THÉORÈME 3. - Soit G un l-sous-groupe compressible d'un A(S). Les l-sous-groupes stabilisateurs de G sont l-sous-groupes fermés dans G.

Démonstration. - Soit G_S^* comme dans la définition 4. Par le lemme 3.2 de [1], l'ensemble $G_S^* \setminus G_S$ est nul, ou il y a e < h $\in G_S^* \setminus G_S$ tel que h = Vh $_{\alpha}$ pour un ensemble $\{h_{\alpha} > e \mid \alpha \in A\} \subseteq G_S$. En conséquence, sh > s . Soit g = h, comprimé hors de h_S . Alors, pour $g_{\alpha} = h_{\alpha} \wedge g \in G_S^+$, on a $g = Vg_{\alpha}$, $sg_{\alpha} = s$, sg > s, et g est comprimé.

Par le théorème 2, le ℓ -sous-groupe G est complètement distributif, donc il y a un f > e subordonné à g . Pour chaque $n \in \mathbb{Z}$, on a

$$\bigvee_{\alpha \in A} g^n g_{\alpha} g^{-n} = g$$

et donc

$$f \leq g^n g_{\alpha} g^{-n}$$
 pour un α .

Mais, $sg^{-n}(g^n g_{\alpha} g^{-n}) = sg^{-n}$ pour chaque α , donc

$$(sg^{-n})f = sg^{-n}$$
 pour chaque $n \in \mathbb{Z}$.

Mais $f \leq g$, donc, si x < xf,

$$f_x \subseteq (sg^{n-1}, sg^n)$$
 pour un $n \in Z$.

Soit k = f comprimé hors de f_{v} . Si $t \in f_{v}$, $t < sg^{n}$, et donc

$$t(g^{-n} g_{\alpha} g^{n}) < sg^{n}(g^{-n} g_{\alpha} g^{n}) = sg^{n} < tk^{-1} g$$
.

Si t \notin f_x, g_{\alpha} \leq g, et donc tg⁻ⁿ g_{\alpha} gⁿ \leq tg = tk⁻¹ g. Donc g⁻ⁿ g_{\alpha} gⁿ \leq k⁻¹ g pour chaque $\alpha \in A$, ce qui implique que $\bigvee_{\alpha \in A}$ g⁻ⁿ g_{\alpha} gⁿ \leq k⁻¹ g < g qui n'est pas possible. Donc G'_s = G_s, et G_s est fermé dans G.

BIBLIOGRAPHIE

- [1] BYRD (R. D.) and LLOYD (J. T.). Closed subgroups and complete distributivity in lattice-ordered groups, Math. Z., t. 101, 1967, p. 123-130.
- [2] WEINBERG (E. C.). Completely distributive lattice-ordered groups, Pacific J. Math., t. 12, 1962, p. 1131-1137.

John A. READ Canadian Coast Guard College P. O. Box 4500 SYDNEY, Nova Scotia (Canada)