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ALGEBRAIC THEORY OF FINITE SEMIGROUPS

by John RHODES

Séminaire DUBREIL-PI SOT
(Algèbre et Theorie des nombres)
23e année, 1969/70
Demi-groupes, n° 10, 9 p.

The viewpoint taken here is the following. We assume the semigroups are finite.
No other assumptions are made. We then wish to obtain structure theorems as deep
and as detailed as possible, valid for arbitrary finite semigroups. ~~e are not, in

general, interested in theorems characterizing special classes of finite semigroups
satisfying a long list of restrictive conditions. Thus our viewpoint is similar to
the current viewpoint in finite group theory.

There are two main reasons why we have adopted this viewpoint. First, because of
applications of finite semigroup theory to languages, automata, biology, finite
phase state physics, the complexity of organisms and machines, the complexity of

games and codes, etc. See [2], [3], and especially in [20] "A generalization of fi-
nite group theory with applications" by RHODES.

For example, the theory of finite state sequential machines and the theory of fi-
nite semigroups are essentially identical. See the previous references. However, we
will not pursue the applications further here.

The second reason is that we are interested in developing a structure theory of
finite semigroups from a purely esthetic motivation. Clearly, a deep general theory
of semigroups (with no assumptions) is not possible. A condition like compactness
or finite is necessary. We choose finite. However we impose no further conditions.
Before 1962, it was thought that it was not possible to develop deep structure
theorems for arbitrary finite semigroups. They were too "general" unlike groups. We
will see that this is not the case.

In the following, we will synthesize the "classical" work with the "modern" work
in finite semigroups. The "classical" work (restricted to finite semigroups) is

which determines the structure of 0-simple semigroups, and hence the
"local" structure of finite semigroups ; the important relations of GREEN [5],
which are valid in arbitrary semigroup, but also very important in finite semi-
groups where further d = ~ ; the result of CLIFFORD [4], on semigroups which are
a union of groups ; the work of the Dubreil school on congruences ; the work of
SCHUTZENBERGER leading to the important Schützenberger representations ([21]), and
the theorem of Schützenberger-Preston ([10]), which faithfully represents finite
regular semigroups as direct sums of row-monomial matrices with coefficients in a



group ; the work of MUNN [9], which determines the irreducible matrix representa-
tions of a finite semigroup.

This work covers the period 1940-1958. In broad outline, these theorems have the

flavor of ring theory. One thinks of a semigroup as the multiplicative part of a

ring. This is especially true of the work of REES, GREEN and MUNN.

The "modern" period begins in 1962 with the theorem of Krohn and Rhodes ([6]),
published in 1965. Later, ZEIGER [24] obtains another proof. Complexity for finite

semigroups was defined by RHODES in 1963, and the first paper on complexity appeared

by KROHN and RHODES [7], in 1968. Recent major papers on the complexity of finite

semigroups are RHODES [13], C 1.4 ~, ~ 15 ~, RHODES and TILSON C 1a ~, [ 19 ~, TILSON [23],
and STIFFLER [22].

A survey of the Modern" period 1962-1969 can be found in RHODES [16 J. A textbook

exposition by KROHN, RHODES and TILSON of the results 1962-1968 can be found in

chapters 1, 5-9, of [8]. For recent research, see [20].

The flavor of the "modern" period is much more like group theory. For an exposi-
tion of this opinion, see in [20] "A generalization of finite group theory with ap-
plications" by RHODES. It is interesting to note that the Schützenberger represen-
tations lie more in the "modern" period than in the "classical" period.

Around 1968, Dennis ALLEN Jr discovered that a synthesis of the "classical" and
"modern" theories might be possible. He was successful in carrying out the details

in some special cases ~ ~ 1 ~) . In 1969, RHODES carried out the general construction
in RHODES and using the general ideas of ALLEN and the powerful techni-

ques of [14]. The ideas and constructions of REES, GREEN, KROHN, RHODES and ZEIGER
are all explicitly combined here. The result is a true synthesis.

In this short paper, we will briefly exposit the work of the "modern" period and

of the "synthesis".

The idea of a structure theory is to "build" an arbitrary finite semigroup from

"simpler" pieces ; to make this precise, we must define "build" and "simpler". We

begin with the definition of "build ".

In the following, all semigroups are of finite order.

Given S , we write S’ ~ S if, and only if, S t is a subsemigroup of S. We

write T ?- S’ or S’ --~> T , if, and only if, there exists an onto homomorphism
or surmorphism of Sf onto T . We write T|S (read T divides S ), if, and

only if, T is a homomorphic image of a subsemigroup of S or T ~-~. S .

Then, all divisors T of S can be "built" from S .



We next consider Rees construction with %he Wedderburn theory f or rings.
Let S be a semigroup, A and B finite non-empty sets, and C : BxA -~ S .

Then A , B ; ~~ , the Rees A x B matrix semigroup with structure semigroup
S and structure matrix C, is by definition the semigroup (A x S x B , .) with

Thus R(S ;A , B ; C) can be "built" from S.

This Rees construction is the most important construction in the "classical" theo-
ry, because it determines the "local structure" of a finite semigroup via the fol-
lowing important theorem.

If G is a multiplicatively written group, GO is G with a zero 0, 0~1,
added. We say C : B x A -~ GO is regular, if, and only if, C is non-zero at

least once in each row and column, i. e., for each b e B , there exists an a 6 A

so that C(b, a) ~ 0 and, for each a e A , there exists a b e B so that

C(b , a) ~0 . I is an ideal of S if, and only if, and 

THEOREM (REES [11]). -Let S be a 0-simple semigroup (i. e. SS fl 0 , and I
an ideal of S implies I = {’0) or I = S ). Then, there exists a group G so
that S is isomorphic to A , B ; C) with C regular. The converse also
holds.

Another construction very popular is the following. Given S, construct the mo-
noid S + U where + denotes disjoint union ; S is an ideal of S + U, 1 ~ U ,
and U is the group of units of S + U , i. e.

U = (X eS+U : there exists Y, Z~U +S such that XY = ZX = 1 ,
where 1 e U is the identity of S + U) .

Informally we say S + U is given by adding a group of units U to S . We give
two examples.

First S ~ S + {I} , where I is a new 2-sided identity for S. Second,
let S be the semigroup of all maps of X n = fl ..... n) into itself under com-
position which are not one-to-one. Let U be the symmetric group on X ,i. e
U is all permutations on X . Then let S + U = the semigroup of all maps of X
into itself. Notice S + U is not uniquely determined by S and U, but one must
take account also of the action of U on S .

The "building" operations of division, Rees construction, and adding a group of
units are "classical" notions. The "simpler" pieces are groups.

We next introduce the Modern" constructions. We are all familiar with the direct



product of two semigroups S~ x S .A generalization of this is the semidirect pro-
duct defined as follows. Let Y s S -~. be a homomorphism of the semi-

group S. into the semigroup of endomorphisms of S into itself under composi-

s.
tion. Writing as (s~) y we have

for all s~ , s~ e S1 , s2 E S2 . These conditions are equivalent with Y

being an homomorphism. Then S~ x Y S 1 (read the semidirect product of S~ by S 1
with connecting homomorphism Y ) is by definition the semigroup (S~ x S. , ~)
with

In group theory, semidirect products co rrespond to split extensions, i. e. N ~ G

and R  G , where R is both a subgroup and a set of representatives of the co-

sets of N in G so NR = G and N n R = ~ 1~ , implies G is isomorphc with

N Xy R with Y(r)(n) == r(n) = For example, D y the dihedral group of
order 2n, is isomorphic with Z xy Z2 where Z is the cyclic group of order

n written additively, Z2 = 1~ , . ) and Y( ~) (x) _ ~(x) = ex .

Also trying Y( s ) ( s ) - s 1( s ) -. s2 ’ we find S x~ S _ S x S , so the semi-
direct product indeed generalizes the direct product.

Given S ~ , Sn ~ , . e . , S ~ , we c an form Sn xy S by cho o sing some Y
and then fonning

For notational convenience, we denote this last expression by

Thus S can be S ..... S, .
From the ’’modern’’ theory, a trivial but important 3-element semigroup U3 occurs,

with U~ = (a ~ b ~ 1) and multiplication table



so x ~ U 3 implies x~ = x . U.. acts faithfully on the right of b) by

((a, with x.a=a for x x.b=b for and

X.I = x for x e fa , b) . Thus a ~destroys the contents and places a ", b

~destroys the contents and places b ~y 1 "does nothing", so from an engineering

point of view, U~ is a "flip-flop" or basic binary memory device.

In the Modern" theory, semidirect products and division are the modes of

"building", and the simple groups (a group G is simple, if, and only if, N  G

implies N = or N = G ) and U~ are the "simpler" or irreducible pieces.

This is made precise in the following theorem which began the "modem period".

THEOREM (KROHN and RHODES [6]). - Given S , then S divides a semidirect pro-

duct whose terms are simple groups dividing S or U... Precisely, given S , there

exists ... y S so that

where, for each j with 1 ~ j ~ n , either S. is a simple group dividing S or

3
Further, if S satisfies (*), and P is a simple group dividing S, then P

divides S. for some j = 1 , ... , n .

For other proofs, and ~~ ~, chapter 5.

By definition, S is a combinatorial semigroup, if p and only if, each subgroup
of S is a singleton.

Then we have the following corollary.

COROLLARY 1. - S is a combinatorial semigroup, if, and only if,

for some n .

By definition, S is an irreducible semigroup, if, and only if, SJS x Y S im-

plies S|S2 or Then we have the following corollary.



COROLLARY 2. - S is an irreducible semigroup, ify and only if, S is a simple

groups or S divides U~.
How can the Rees theorem and the Krohn-Rhodes theorem be synthesized ? One natu-

ral way would be to replace semidirect products, in the latter theorem, by the Rees

construction and the construction of adjoining groups of units. We proceed to do

this.

~ ~

Let G be a group. (G ~ G ) denotes the semigroup G acting on the right of

the set G~ where G~=G+(C : ge G) with for

all g e G . Thus has group of units G and kernel (= minimal 2-sided ideal)

fC : g with C 

S~ 
C 

~ 
= C 

&#x26;~ 
for all g~e ~ E G. Farther, g. " C 

c~ 
=C 

6~
and C g =C for all g , g e G.2 ~21

Suppose groups G. y ... y G are given. Then, consider the constru.ctions

Here R(S) denotes some Rees matrix semigroup over S ! i. e. A , B 9 C)
for some A, B and C, y and S t-2014> S + U denotes, y as was introduced before,

adjoining a group of units U to S . Then the promised synthesis is the following.

THEOREM ( RHODES and ALLEN [17J). - Let S be given. Then there exists groups

G2 ’ 0.. ,G n with G . dividing S (we allow G . _ ~ 1~ ~ such that

Thus every finite semigroup can be obtained up to division, by using Rees cons-

truction, and by adjoining groups of units.

The Rhodes-Allen theorem is deeper than the Krohn-Rhodes theorem, because of the

following. In ~~~~, let SJR be given by S «-. T ~:R, with Q : T --~> S . Then

Q can be chosen to be very "nice ", and often T can be choosen to be R . What

do we mean by ’~nice" homomorphisms ?

Let a denote one of the four Green Then, by

definition, Q : S -~-. ~ ~> T if, and only if, Q is one-to-one restricted to

each a-class of S . Thus Q a S ~~---.-~> T if, and only if, sl’ s2 E S and

s ~ 1 s 2 and S 1 s _ 1 S 
1 

s 2 and s 1 S ~ ~ s 2 S 
1 al l imply ~C s 1 ~~ Q C s 2 ) .



Also, by definition, Q : S -~.~> T if, and only if,

Thus Q: S-2014~>T if, and only if,
C7

Then we have that every arbitrary surmorphism can be decomposed into y(R) and H-

epimorphisms, or the following proposition.

PROPOSITION Let Q a S -~> T . Then there exists

such that Q ... Q _ Q and Q , Q , Q- , ... Q 9 Q y ...

are K-surmorphisms.

Now, the restriction of a 03B1-surmorphism to a subsemigroup need not stay a 

sunnorphism. To remedy this, one introduces, by definition, Q : S T if,
and only ify s and s~ regular elements of S and Q(s2) imply

81 Then, it can be proved, y using a lemma of Tilson, that the restriction of

03B1’-surmorphism to subsemigroups stay 03B1’-surmorphisms.

Then, in the division S )R of (**) given by S ~.-"- we can choose R,
T and Q satisfying the conditions of the theorem, and such that Q is both a

Y(H) and J’-surmorphism. Also, if S is regular, we can choose T to be regular,
and Q to be and d. Thus Q can always be chosen t , be very "nice".

Also, very often, T can be taken to be all of J&#x26; . However, precise conditions

under which this is the case will not be given here.

Thus, the equation (**) gives a powerful method to study the structure of an arbi-
trary finite semigroup S .

We might mention in closing that the complexity # G(S) of a finite semigroup S

is defined as the smallest non-negative integer n such that

where G1 , . e . 9 G1 are groups, and ... y Cn are combinatorial semigroups.

Thus, complexity is the first step in determining all the "minimal" solutions of

t~~ given S . Much is known about the complexity of finite semigroups, and it is



important in applications. See [2], [7], ~8 ~, ~ 13~~ ~ 14~~ ~ 15 ~, ~ 16 ~~ ~ 18 ~, ~ 19 ~~
[20], [22] and C23~.
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