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03C3-REFLEXIVE SEMIGROUP AND RINGS

by Maurice CHACRON (*) and Gabriel THIERRIN (**)

Séminaire DUBREIL-PISOT

(Algèbre et Théorie des nombres)
23e année 1969/70
Demi-groupes, n° 16, 5 p.

a-reflexive semigroup s generalize hamiltonfan groups and lend themselves to a

precise study in the subdirectly irreducible case. A a-reflexive semigroup S,
which is the multiplicative semigroup of a ring, is shovm to be commutative.

We shall call a semigroup S y a ~-reflexive semigroup, if any subsemigroup H

in S is reflexive (i. e. for all a q , abE K implies baE H ([2], [4])).
It can be verified that any group G is a a-reflexive semigroup if, and only if,
any subgroup of G is normal. In this paper, we characterize subdirectly irredu-
cible a-reflexive semigroups. derive the following commutativity result o Any
generalized commutative ring R ([l]), p in which the integers n = n(x , y) in

the equation (xy)n = (yx)m can be taken equal to 1 9 for all x, y E R , f must

be a commutative ring.

Conventions. - If S(R) is a semigroup (ring), then the multiplicative subsemi-
group that is generated by a given element x is written [x] . A polynomial

Z[t] (the ring of integral polynomials) having the fomn

is termed lower monic polynomial of co-degree k . Henceforth, all polynomials
f(t) E Z[t] are assumed to be without constant term.

I

In this part, S is a multiplicative semigroup. Our aim is to characterize sub-
directly irreducible a-reflexive semigroups S . The following proposition is
evident.

PROPOSITION 1. - Any semigroup S is a-reflexive if and only if. it satisfies
the following condition >
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From proposition 1 follows proposition 2.

PROPOSITION 2. - Let a , b be any two non-commuting elements of a a-reflexive

semigroup S . Then for some m > 1, y 

Proof. - There exists r > 1 such that ba = As ba, r > 1 . As

ba E iJe have Therefore, for some s > 3. , ab

with 

Proposition 2 is elementary, and is an important tool for the present considera-

tions. We can now prove our first theorem.

THEOREM 1, - Any group G is cr-reflexive if, and only i f , eve ry subgroup of G

is normal.

Proof. - The "only if" is evident. To prove the «if’~ it suffices to show that for

any a, bEG, y if ab ~ ba , then [ab] coincides with the cyclic subgroup that
is generated by ab . But this is evident from proposition 2 and from the structure
of finite cyclic semigroups.

THEOREM 2.

(l) Any o-reflexive semigroup S is a c entral idempotent semigroup.

(2) Any a-reflexive semigroup S without central idempotents is commutative.

Proof.

(l) Let e be an idempotent in S . Let There are r, s  1 such

that 
ex = (xe~ , r xe (Prop. 1) .

Then

exe = (xe) e = ex and exe = e(ex)s = (ex)~ = xe .

(2). By (1,~ , S does not have idempotents. By proposition 2, no elements

a , b E S do not commute pairwise.

The following proposition is evident.

PROPOSITION 3. - Any a-reflexive semigroup is a subdirect product of subdirectly
irreducible a-reflexive semigroups.

We are now in a position to show our main result.

THEOREM! 3. - Let S be a non commutative a-reflexive semigroup which is subdi-
rectly irreducible. Then S satisfies the following conditions a

(l) S has an identity, and I yES, is a

a-reflexive group which is noncommutative (hamiltonian group).



(2) If D = S - G is non empty9, then S is a semigroup with zero 0 E D ,

D is the maximum ideal of S , and D is contained in the center of S .

Proof. - In view of theorem 2, S must contain at least one central idempotent.

Since S is subdirectly irreducible , an idempotent element of S is the zero of

S or the identity element 1 ([5]) .

Let us suppose that S has no identity element 1 . Then S must have a zero

element 0 . For some a, be S , we have ba . Hence, by proposition 2,

(ab)m = ab for some m > 1 ~ and is an idempotent. Therefore,

(ab) =0 ~ f ab = 0 and ba = ab ,

which is a contradiction, and S has an identity follows. If x E G and xy = 1 ,

then, since 1 is a subsemigroup of S 9 1 . This shows that G is the

group of invertible elements of S and that G is a a-reflexive.

Assuming (2), it is evident that G is non commutative.

It remains to show (2). It is immediate that D is the maximum ideal of S . Let

x E S , a E D . Suppose ax ~ xa . T he n, for some m > 1 we have ax

(Prop. 2). But ax ~ 0 , and (ax) is an idempotent f 0 . Hence 
and a ~ D , y a contradiction.

To see that S is a semigroup with zero, we proceed as follows. Let H be the

intersection of all ideals of S containing more than one element. If D is redu-

ced to one element z 9 then z is the zero of S . In the opposite case, H ~ D , y
and H is in the center of S. As S is subdirectly irreducible, y H contains

more than one element ( ~ 5 ~ ~ . If for each x ~ H 9 y we have Sx = xS = H ~ 9 then H

is a. group, hence contains is a non zero idempotent so H must be S, y a contra-

diction. Therefore there exists at least one element z E H such that Sz = [zt) .
As S has an identity element z = z’ follows and 0 = z is the zero of S .

II

In this part, R is a ring. In view of proposition 2, one can give the following
generalization of a-reflexive semigroups. A ring R is L-reflexive if, for any
two elements a , b E R , y either ab = ba or ab = f(ba) for some integral poly-
nomial f(t) depending on a and b of degree m? 2 .

Clearly, if the multiplicative semigroup of R is a-reflexive, then R is

~-reflexive. Our aim is to show that any E-reflexive ring is commutative. The ana-

log of proposition 2 reads as follows o



PROPOSITION 4. - Let a, b be any two commuting elements of a ~-reflexive ring.
Then for some lower nonic polynomial f of co-degree 1 , we have f(ab) - 0 .

Proof. - There are g(t) and h(t) of degrees  2 such that ab = g(ba) ,
ba = h(ab) . Hence ab = gh(ab) and f(t) = t - gh(t) is the required polynomial.

PROPOSITION 5. - Any ~-reflexive ring R is a central idempotent ring.

Proof. - Let e be an idempotent in R . Let x E R . We can find two poly-
nomials f, g E Z(t) of degree m ~ 1 such that ex = f(xe) , xe = g(ex). Then

exe = f(xe)e = f(xe) ~ ex , exe = e~(ex) = g(ex) = xe .

THEORE 4. - Any E-reflexive ring R is commutative.

Proof. - Our proof will go by reduction to the case where R is subdirectly irre-

ducible. As a result of HERSTEIN ([3], theorem 17), all we will have to show is

that for any a E R there is some lower monic polynomial f of co-degree 1 such

that the center of R . Assume by contradiction that some a fails to

satisfy the latter condition. Then a ~ C and there must be some b such that

ab ~-~ b..; . By proposition 4, there is some lower monic polynomial s(t) of co-degree
: such that s(ab) = 0 . Since the co-degree of s(t) is 1 , we have for some r

ab = (ab )~ r and (ab)r = r(ab) . Then e = (ab)r is an idempotent. If e = 0 ,
then ab = 0 , and ba = 0 = ab , contrary to the hypothesis. Therefore e is non

zero idempotent. Since R is subdirectly irreducible and since, by proposition 5,
e is central, then e must be the identity of R. Therefore (ah)r = r(ab) = 1 ..

Repeating for ba, we see that b is invertible. Consider a and G . if

(b-1 a)b = b(b-1 a) y then b-1 ab = a and ab = ba , contrary to the hypothesis.
Therefore bw1 a and b do not commute. By proposition 4 again, there is some
lower monic polynomial f(t) of co-degree 1 such that f ( b-~’ ab) = 0 . As
f(b-1 ab) = b _1 we have b _1 f(a)b = 0 . Hence, f(a) = 0 , and f a E C ,
a contradiction. This establishes the theorem.

COROLLARY 1. - Any o-reflexive semigroup which is the multiplicative semigroup
of a ring is commutative.

COROLLARY 2. - Any generalized commutative ring R , in which the integers
n = n(x , y) in the equation (yx)m can be taken equal to 1 for all
x , y E R , y is a commutative ring. 
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