SÉMINAIRE DUBREIL. ALGÈBRE ET THÉORIE DES NOMBRES

MAURICE CHACRON GABRIEL THIERRIN

σ-reflexive semigroup and rings

Séminaire Dubreil. Algèbre et théorie des nombres, tome 23, n° 2 (1969-1970), exp. n° DG 16, p. DG1-DG5

http://www.numdam.org/item?id=SD_1969-1970__23_2_A13_0

© Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1969-1970, tous droits réservés.

L'accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

O-REFLEXIVE SEMIGROUP AND RINGS

by Maurice CHACRON (*) and Gabriel THIERRIN (**)

 σ -reflexive semigroups generalize hamiltonian groups and lend themselves to a precise study in the subdirectly irreducible case. A σ -reflexive semigroup S, which is the multiplicative semigroup of a ring, is shown to be commutative.

We shall call a semigroup S , a σ -reflexive semigroup, if any subsemigroup H in S is reflexive (i. e. for all a $b \in S$, abe H implies ba \in H ([2], [4])). It can be verified that any group G is a σ -reflexive semigroup if, and only if, any subgroup of G is normal. In this paper, we characterize subdirectly irreducible σ -reflexive semigroups. We derive the following commutativity result: Any generalized commutative ring R ([1]), in which the integers n = n(x, y) in the equation $(xy)^n = (yx)^m$ can be taken equal to 1, for all $x, y \in R$, must be a commutative ring.

Conventions. - If S(R) is a semigroup (ring), then the multiplicative subsemigroup that is generated by a given element x is written [x]. A polynomial $f(t) \notin Z[t]$ (the ring of integral polynomials) having the form

$$f = f(t) = t^{k} + r_{k+1} t^{k+1} + \dots + r_{k+m} t^{k+m}$$
 $(k \ge 1)$

is termed <u>lower monic</u> polynomial of <u>co-degree</u> k. Henceforth, <u>all polynomials</u> $f(t) \in Z[t]$ are assumed to be without constant term.

Ι

In this part, S is a multiplicative semigroup. Our aim is to characterize subdirectly irreducible σ -reflexive semigroups S. The following proposition is evident.

PROPOSITION 1. - Any semigroup S is σ -reflexive if, and only if, it satisfies the following condition :

$$\forall$$
 a, b \in S, \exists m = m(a, b) \geqslant 1; ab = (ba)^m

⁽ *) This research has been supported by Grant A 4807 of the National Research Council of Canada.

 $[\]binom{\text{A}^{\text{A}}}{\text{A}}$) This research has been supported by Grant A 4096 of the National Research council of Canada.

From proposition 1 follows proposition 2.

PROPOSITION 2. - Let a, b be any two non-commuting elements of a c-reflexive semigroup S. Then for some m > 1, $(ab)^m = ab$.

<u>Proof.</u> - There exists $r \ge 1$ such that $ba = (ab)^r$. As $ab \ne ba$, $r \ge 1$. As $ba \in [(ab)^r]$, we have $ab \in [(ab)^r]$. Therefore, for some $s \ge 1$, $(ab)^{rs} = ab$ with $rs \ge 1$.

Proposition 2 is elementary, and is an important tool for the present considerations. We can now prove our first theorem.

THEOREM 1. - Any group G is G-reflexive if, and only if, every subgroup of G is normal.

<u>Proof.</u> - The "only if" is evident. To prove the "if" it suffices to show that for any a, $b \in G$, if $ab \neq ba$, then [ab] coincides with the cyclic subgroup that is generated by ab. But this is evident from proposition 2 and from the structure of finite cyclic semigroups.

THEOREM 2.

- (1) Any o-reflexive semigroup S is a central idempotent semigroup.
- (2) Any o-reflexive semigroup S without central idempotents is commutative.

 Proof.
- (1) Let e be an idempotent in S . Let $x \in S$. There are r , $s \ge 1$ such that $ex = (xe)^{\mathbf{r}} , \quad xe = (ex)^{\mathbf{S}} \qquad (\text{Prop. 1}) .$ Then $exe = (xe)^{\mathbf{r}} e = (xe)^{\mathbf{r}} = ex \quad \text{and} \quad exe = e(ex)^{\mathbf{S}} = (ex)^{\mathbf{S}} = xe .$
- (2) By (1), S does not have idempotents. By proposition 2, no elements a, $b \in S$ do not commute pairwise.

The following proposition is evident.

PROPOSITION 3. - Any σ -reflexive semigroup is a subdirect product of subdirectly irreducible σ -reflexive semigroups.

We are now in a position to show our main result.

- THEOREM 3. Let S be a non commutative o-reflexive semigroup which is subdirectly irreducible. Then S satisfies the following conditions:
- (1) S has an identity, and $G = \{x \mid x \in s, y \in S, xy = 1\}$ is a σ -reflexive group which is noncommutative (hamiltonian group).

(2) If D = S - G is non empty, then S is a semigroup with zero $O \in D$, D is the maximum ideal of S, and D is contained in the center of S.

<u>Proof.</u> - In view of theorem 2, S must contain at least one central idempotent. Since S is subdirectly irreducible, an idempotent element of S is the zero of S, or the identity element 1 ([5]).

Let us suppose that S has no identity element 1 . Then S must have a zero element 0 . For some a , b \in S , we have ab \neq ba . Hence, by proposition 2, $(ab)^m = ab$ for some m > 1 , and $(ab)^{m-1}$ is an idempotent. Therefore,

$$(ab)^{m-1} = 0$$
, $ab = 0$ and $ba = ab$,

which is a contradiction, and S has an identity follows. If $x \in G$ and xy = 1, then, since 1 is a subsemigroup of S, yx = 1. This shows that G is the group of invertible elements of S and that G is a σ -reflexive.

Assuming (2), it is evident that G is non commutative.

It remains to show (2). It is immediate that D is the maximum ideal of S. Let $x \in S$, $a \in D$. Suppose $ax \neq xa$. Then, for some m > 1 we have $(ax)^m = ax$ (Prop. 2). But $ax \neq 0$, and $(ax)^{m-1}$ is an idempotent $\neq 0$. Hence $(ax)^{m-1} = 1$ and $a \notin D$, a contradiction.

To see that S is a semigroup with zero, we proceed as follows. Let H be the intersection of all ideals of S containing more than one element. If D is reduced to one element z, then z is the zero of S. In the opposite case, $H \subseteq D$, and H is in the center of S. As S is subdirectly irreducible, H contains more than one element ([5]). If for each $x \in H$, we have Sx = xS = H, then H is a group, hence contains is a non zero idempotent so H must be S, a contradiction. Therefore there exists at least one element $z \in H$ such that $Sz = \{z^i\}$. As S has an identity element $z = z^i$ follows and 0 = z is the zero of S.

II

In this part, R is a ring. In view of proposition 2, one can give the following generalization of σ -reflexive semigroups. A ring R is $\widetilde{\Sigma}$ -reflexive if, for any two elements a, b \in R, either ab = ba or ab = f(ba) for some integral polynomial f(t) depending on a and b of degree m \geqslant 2.

Clearly, if the multiplicative semigroup of R is σ -reflexive, then R is Σ -reflexive. Our aim is to show that any Σ -reflexive ring is commutative. The analog of proposition 2 reads as follows:

PROPOSITION 4. - Let a, b be any two commuting elements of a Σ -reflexive ring. Then for some lower monic polynomial f of co-degree 1, we have f(ab) = 0.

<u>Proof.</u> - There are g(t) and h(t) of degrees $\geqslant 2$ such that ab = g(ba), ba = h(ab). Hence ab = gh(ab) and f(t) = t - gh(t) is the required polynomial.

PROPOSITION 5. - Any Σ -reflexive ring R is a central idempotent ring.

<u>Proof.</u> - Let e be an idempotent in R . Let $\mathbf{x} \in R$. We can find two polynomials f , $g \in Z(t)$ of degree $m \geqslant 1$ such that $e\mathbf{x} = f(xe)$, xe = g(ex). Then $exe = f(xe)_e = f(xe) = ex$, exe = eg(ex) = g(ex) = xe .

THEORE 4. - Any Σ -reflexive ring R is commutative.

<u>Proof.</u> - Our proof will go by reduction to the case where R is subdirectly irreducible. As a result of HERSTEIN ([3], theorem 17), all we will have to show is that for any $a \in R$ there is some lower monic polynomial f of co-degree 1 such that $f(a) \in C$, the center of R. Assume by contradiction that some a fails to satisfy the latter condition. Then $a \notin C$ and there must be some b such that $ab \neq ba$. By proposition 4, there is some lower monic polynomial s(t) of co-degree 1 such that s(ab) = 0. Since the co-degree of s(t) is 1, we have for some rab = $(ab)^2$ r and (ab)r = r(ab). Then e = (ab)r is an idempotent. If e = 0, then ab = 0, and ba = 0 = ab, contrary to the hypothesis. Therefore e is non zero idempotent. Since R is subdirectly irreducible and since, by proposition 5, e is central, then e must be the identity of R. Therefore (ah)r = r(ab) = 1.

Repeating for ba , we see that b is <u>invertible</u>. Consider b^{-1} a and C . If $(b^{-1} \ a)b = b(b^{-1} \ a)$, then $b^{-1} \ ab = a$ and ab = ba, contrary to the hypothesis. Therefore b^{-1} a and b do not commute. By proposition 4 again, there is some lower monic polynomial f(t) of co-degree 1 such that $f(b^{-1} \ ab) = 0$. As $f(b^{-1} \ ab) = b^{-1} \ f(a)b$, we have $b^{-1} \ f(a)b = 0$. Hence, f(a) = 0, and $f(a) \in C$, a contradiction. This establishes the theorem.

COROLLARY 1. - Any o-reflexive semigroup which is the multiplicative semigroup of a ring is commutative.

COROLLARY 2. - Any generalized commutative ring R , in which the integers n = n(x , y) in the equation $(xy)^n = (yx)^m$ can be taken equal to 1 , for all $x , y \in R$, is a commutative ring.

REFERENCES

- [1] BELLUCE (R.), JAIN (S. K.) and HERSTEIN (I. N.). Generalized commutative rings, Nagoya math. J., t. 27, 1966, p. 1-5.
- [2] CLIFFORD (A. H.) and PRESTON (G. B.). The algebraic theory of semigroups, Vol. 2 Providence, American mathematical Society, 1967 (Mathematical Surveys, 7).
- [3] HERSTEIN (I. N.). The structure of a certain class of rings, Amer. J. Math., t. 75, 1953, p. 866-871.
- [4] THIERRIN (G.). Contribution à la théorie des anneaux et des demi-groupes, Comment. Math. Helvet., t. 32, 1957, p. 93-112 (Thèse Sc. math., Paris, 1954).
- [5] THIERRIN (G.). Sur la structure des demi-groupes, Publ. scient. Univ. Alger, Série A, t. 3, 1956, p. 161-171.

(Texte regule 5 octobre 1970)

Maurice CHACRON
Dept of Mathematics
University of Windsor
WINDSOR, Ont. (Canada)

Gabriel THIERRIN Départ. Mathématiques Université de Montréal MONTREAL. Québec (Canada)