SÉMINAIRE DUBREIL. ALGÈBRE ET THÉORIE DES NOMBRES

BENALI BENZAGHOU

Algèbres de Hadamard

Séminaire Dubreil. Algèbre et théorie des nombres, tome 22, n° 2 (1968-1969), exp. n° 13, p. 1-13

http://www.numdam.org/item?id=SD 1968-1969 22 2 A1 0>

© Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1968-1969, tous droits réservés.

L'accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ALGÈBRES DE HADAMARD

par Benali BENZAGHOU

Cet exposé comportera peu de démonstrations; on trouvera les démonstrations dans [1], [2], [3], ou dans les exposés faits au Séminaire de Théorie des nombres ([4], [5], [6]).

1. Définitions.

Soit A un anneau commutatif unitaire; nous munissons le A-module des séries formelles A[X] du produit (de Hadamard):

$$\sum_{n=0}^{\infty} a_n X^n \cdot \sum_{n=0}^{\infty} b_n X^n = \sum_{n=0}^{\infty} a_n b_n X^n .$$

Nous obtenons une A-algèbre, notée $\mathcal{H}(A)$, commutative, non intègre, à élément unité $\delta = \sum_{n=0}^{\infty} X^n$.

Nous associons à la catégorie \underline{A} des anneaux commutatifs unitaires, la catégorie de Hadamard $\mathcal{R}(\underline{A})$ définie par :

- Ses objets sont les A-algèbres $\mathcal{K}(A)$, où A est un objet de A;
- Un morphisme $\mathcal{H}(\phi)$ de $\mathcal{H}(A)$ dans $\mathcal{H}(A^{\bullet})$ est défini, ϕ étant un morphisme de A dans A^{\bullet} , par

$$\mathcal{X}(\varphi) \cdot \sum_{n=0}^{\infty} \mathbf{a}_n \mathbf{X}^n = \sum_{n=0}^{\infty} \varphi(\mathbf{a}_n) \mathbf{X}^n$$
.

 \mathbb{R} peut être considéré comme un foncteur de $\underline{\mathbb{A}}$ dans $\mathbb{R}(\underline{\underline{\mathbb{A}}})$, covariant, exact, représentable.

Un foncteur de Hadamard \mathcal{F} est un foncteur de \mathcal{A} dans une sous-catégorie de $\mathcal{R}(\mathcal{A})$: $\mathcal{F}(\mathcal{A})$ est une sous-algèbre de $\mathcal{R}(\mathcal{A})$.

Si B est une partie de A, nous notons:

$$\mathfrak{T}(B, A) = \{\sum_{n=0}^{\infty} a_n X^n \in \mathfrak{T}(A), a_n \in B, \forall n \in \mathbb{N}\}$$
.

Exemples de foncteurs de Hadamard:

 1° $\Theta(A) = \{\sum_{n=0}^{\infty} P(n) X^{n}, P(X) \in A[X]\}$. Notons $\theta = \sum_{n=0}^{\infty} nX^{n}$, alors $\Theta(A) = A[\theta]$; si A est intègre, $\Theta(A)$ est intègre.

2° Soit $h_{\alpha}=\sum\limits_{n=0}^{\infty}\alpha^{n}$ X^{n} , $\alpha\in A$; $\mathbb{R}_{1}(A)$ est la sous-algèbre de $\mathcal{H}(A)$ engendrée par les h_{α} , $\alpha\in A$.

3º $\Re^{\bullet}(A)$ est la sous-algèbre de $\Re(A)$ engendrée par $\Theta(A)$ et $\Re_{\bullet}(A)$.

4°
$$S(A) = \{\sum_{n=0}^{\infty} a_n X^n, (a_n) \text{ ne prend qu'un nombre fini de valeurs distinctes}\}.$$

5° Soient % la catégorie des corps commutatifs, %(%) la catégorie de Hadamard associée.

Pour un corps commutatif K , soit

$$\Re(\mathbb{K}) = \{ \sum_{n=0}^{\infty} a_n \ \mathbb{X}^n = \frac{\mathbb{P}(\mathbb{X})}{\mathbb{Q}(\mathbb{X})} \text{, } \mathbb{P}(\mathbb{X}) \in \mathbb{K}[\mathbb{X}] \text{, } \mathbb{Q}(\mathbb{X}) \in \mathbb{K}[\mathbb{X}] \text{, } \deg \mathbb{P} < \deg \mathbb{Q} \text{, } \mathbb{Q}(\mathbb{O}) \neq \mathbb{O} \} \text{.}$$

Si
$$\mathfrak{A} = \sum_{n=0}^{\infty} a_n X^n = \frac{P(X)}{Q(X)} \in \mathfrak{R}(K)$$
, $Q(X) = q_0 + q_1 X + \dots + q_h X^h$, alors

$$q_0 a_{n+h} + q_1 a_{n+h-k} + \cdots + q_h a_n = 0$$
, $\forall n \ge 0$,

et

$$a_n = \sum_{i=1}^{s} P_i(n) \alpha_i^n ,$$

où les α_i sont les zéros de

$$q^*(x) = q_0 x^h + q_1 x^{h-1} + \dots + q_h$$
,

les P_i des polynômes de $K^1[X]$, où K^1 est l'extension de K par les α_i , le degré de P_i étant égal à la multiplicité de α_i moins 1.

 $\Re(K)$ est une sous-algèbre de $\Re(K)$ qui sera étudiée en détail dans la suite, \Re est un foncteur de Hadamard.

6° Soient K un corps commutatif de caractéristique zéro, et E l'anneau des fonctions, définies sur $\underline{\mathbb{N}}$ et qui soient restrictions de fractions rationnelles de K(X). Considérons

$$\mathfrak{I}(\mathtt{K}) \,=\, \{\, \sum\limits_{n=0}^{\infty} \, a_n \,\, \mathtt{X}^n \,\,, \quad a_n \in \mathtt{K} \,\,, \quad \mathtt{F} \,\, \varpi_1 \,\,, \,\, \cdots \,\,, \,\, \varphi_h \in \mathtt{E} \,\,, \quad \varpi_h \neq 0 \,\,, \,\, \mathtt{et} \\ a_{n+h} \,=\, \varpi_1(\mathtt{n}) \,\, a_{n+h-1} \,+\, \cdots \,+\, \varpi_h(\mathtt{n}) \,\, a_n \,\,, \quad \forall \,\, \mathtt{n} \,\geqslant\, 0 \} \quad,$$

 $\mathfrak{J}(\mathtt{K})$ est une sous-algèbre de $\mathfrak{K}(\mathtt{K})$, contenant $\mathfrak{K}(\mathtt{K})$.

7° A tout anneau de fonctions E de $\underline{\mathbb{N}}$ dans K , on peut associer une sousalgèbre de $\mathbb{K}(K)$ en considérant les suites $a_n = \phi(n)$, $\phi \in E$ (mais de manière non nécessairement fonctorielle).

8° Sur \underline{C} , nous pouvons considérer par exemple les sous-algèbres de $\Re(\underline{C})$:

$$\mathcal{R}^{1}(\underline{C}) = \{\sum_{n=0}^{\infty} a_{n} X^{n}, \overline{\lim}_{n\to\infty} |a_{n}|^{1/n} < + \infty \},$$

 $\mathcal{H}_1(\underline{\mathbb{C}}) = \{ \sum_{n=0}^\infty a_n \ X^n \ , \ f(\mathbf{z}) = \sum_{n=0}^\infty a_n \ \mathbf{z}^n \ \text{est une fonction holomorphe dans } \underline{\mathbb{C}} - \mathbb{S}_f \ ,$ cù \mathbb{S}_f est un ensemble de points isolés, $0 \notin \mathbb{S}_f \}$ (théorème de Hadamard ([11])).

2. Propriétés générales des foncteurs 3.

2.1. PROPOSITION.

- (a) Soient k un corps commutatif, K une extension galoisienne de degré d de k, et supposons que $\mathfrak{F}(k, K) = \mathfrak{F}(k)$. Alors $\mathfrak{F}(K)$ est une $\mathfrak{F}(k)$ -algèbre entière, libre de type fini, de rang d.
- (b) Soient A un anneau principal, k son corps des quotients, K une extension galoisienne de degré d de k, A' la fermeture intégrale de A dans K; alors $\mathfrak{F}(A',K)$ est une $\mathfrak{F}(A,K)$ -algèbre entière, libre de type fini, de rang d.

Si (w_1, \dots, w_d) est une base de K sur k, soit $\mathfrak{A} = \sum_{n=0}^{\infty} a_n X^n \in \mathfrak{F}(K)$, et posons

$$a_n = \lambda_{n,1} \omega_1 + \cdots + \lambda_{n,d} \omega_d$$

 $G = \{\sigma_1, \dots, \sigma_d\}$ étant le groupe de Galois de K sur k,

$$\begin{pmatrix} \sigma_1(a_n) \\ \vdots \\ \sigma_d(a_n) \end{pmatrix} = M \begin{pmatrix} \lambda_{n,1} \\ \vdots \\ \lambda_{n,d} \end{pmatrix} ,$$

d'où

$$\Lambda_{j} = \sum_{n=0}^{\infty} \lambda_{n,j} X^{n} \in \mathfrak{F}(k, K) = \mathfrak{F}(k).$$

De même, soit $P_n(Y)$ le polynôme caractéristique de l'endomorphisme de K défini par $x \longmapsto a_n x$:

$$P_n(Y) = Y^d + \alpha_{n,1} Y^{d-1} + \dots + \alpha_{n,d}$$

alors

$$P(Y) = Y^{d} + \Lambda_{1} Y^{d-1} + \dots + \Lambda_{d}$$
,

où
$$\Lambda_{j} = \sum_{n=0}^{\infty} \alpha_{n,j} X^{n} \in \mathfrak{F}(k, K)$$
, avec $P(\mathfrak{I}) = 0$.

2.2. PROPOSITION. - Pour le foncteur $\mathbb R$, nous avons $\mathbb R(k,K)=\mathbb R(k)$, et la proposition 2.1 peut être complétée, lorsque k est de caractéristique zéro, par : Soit $\overline{\mathbb G}=\{\overline{\sigma}=(\sigma_n)\ ,\ \sigma_n\in\mathbb G\ ,\ (\sigma_n)\ \text{ périodique}\}$. Alors toutes les solutions de $\mathbb P(\mathbb Y)=0$ dans $\mathbb R(K)$ sont de la forme :

$$\overline{\sigma} \mathbb{I} = \sum_{n=0}^{\infty} \sigma_n(a_n) X^n$$
, $\overline{\sigma} = (\sigma_n) \in \overline{G}$.

C'est une conséquence du corollaire suivant d'un théorème de Mahler ([12]) :

2.3. PROPOSITION. - Soient K un corps de caractéristique zéro, E un ensemble fini d'endomorphismes de K; soit $\mathbb{I} = \sum_{n=0}^{\infty} a_n X^n \in \mathbb{R}(K)$. Considérons

$$\mathfrak{B} = \sum_{n=0}^{\infty} \varphi_n(\mathbf{a}_n) \mathbf{X}^n ,$$

où $\varphi_n \in E$ pour chaque n . Alors

$$\mathfrak{B} \in \mathfrak{K}(\mathtt{K}) <\!\!\!=\!\!\!> \ \overline{\varpi} = (\phi_n)$$
 est périodique .

2.4. PROPOSITION. - Soient K une extension séparable de degré fini de k , N l'application norme de K dans k , $\mathfrak{T}(\mathbb{N})$ l'application associée de $\mathfrak{T}(K)$ dans $\mathfrak{T}(k)$, alors

" $\mathfrak{A} \in \mathfrak{F}(K)$ est inversible dans $\mathfrak{F}(K)$ "

$$\iff$$
 " $\mathfrak{F}(N)(\mathfrak{A})$ est inversible dans $\mathfrak{F}(k$, $K)$ " .

COROLLAIRE. - Soient K un corps de nombres algébriques, α son anneau d'entiers, α son groupe des unités. Alors α (α), K) est un groupe multiplicatif, c'est le groupe des unités de α (α).

En effet, si $\mathfrak{A} = \sum_{n} a_{n} X^{n} \in \mathfrak{F}(\mathfrak{A}, K)$, alors $\mathfrak{B} = \sum_{n} N(a_{n}) X^{n} \in \mathfrak{F}(\mathfrak{Q}, K)$ et $\mathfrak{B}^{2} = \delta$.

3. Anneaux de Fatou.

Nous avons défini R pour un corps commutatif; soient A un anneau commutatif unitaire intègre, K son corps des quotients. Définissons l'ensemble R(A) par :

$$\mathbb{R}(\Delta) = \{\sum_{n=0}^{\infty} a_n X^n , a_n \in \Delta , \exists q_1, \dots, q_h \in \Delta \text{ tels que} \\ a_{n+h} = q_1 a_{n+h-1} + \dots + q_h a_n, \forall n > 0 ,$$
 et $\Delta = \begin{vmatrix} a_0 & \dots & a_{h-1} \\ \vdots & & & \\ a_{h-1} & \dots & a_{2h-1} \end{vmatrix} \neq 0 \}$.

Lorsque A est intégralement clos, R(A) est une A-algèbre de Hadamard.

Jacobi Tion. - A est un anneau de Fatou, si $\Re(A) = \Re(A, K)$.

Une fraction rationnelle $\frac{P(X)}{Q(X)}$ de K(X) est normalisée, si deg $P < \deg Q$, (P,Q) = 1 et Q(0) = 1. Soit alors $\sum_{n=0}^{\infty} a_n X^n \in K[[X]]$ sa série de Taylor à l'origine.

"A est un anneau de Fatou" \iff "Pour toute fraction rationnelle normalisée $\frac{P(X)}{Q(X)}$ de K(X), de série de Taylor à l'origine $\sum\limits_{n=0}^{\infty}a_{n}X^{n}$, la condition $a_{n}\in A$, pour tout n, implique $Q(X)\in A[X]$ ".

Exemples: Z est un anneau de Fatou (lemme de Fatou ([10])); un anneau de Dedekind ([14]), un anneau factoriel ([9]), sont des anneaux de Fatou.

3.2. PROPRIÉTÉS.

(a) Soient L un corps commutatif, $\binom{A}{\alpha}_{\alpha\in I}$ une famille de sous-anneaux de L , $A=\bigcap_{\alpha\in I}A$. Si chaque A est un anneau de Fatou, alors A est un anneau de Fatou.

COROLLAIRE. - Tout anneau commutatif unitaire intègre possède une enveloppe de Fatou (plus petit anneau de Fatou le contenant).

(b) Un anneau de Fatou est complètement intégralement clos.

En effet, soit $\alpha \in K$, tel qu'il existe $d \in A$, $d \neq 0$, et $d\alpha^n \in A$ pour tout n; alors $\sum\limits_{n=0}^{\infty} d\alpha^n \ X^n = \frac{d}{1-\alpha X}$ est normalisée, d'où $\alpha \in A$.

(c) Soient K un corps commutatif, v une valuation non triviale de K, A l'anneau de la valuation. Alors

" A est un anneau de Fatou" <=> " v est de hauteur 1 " .

En effet:

"A de Fatou" => "A complètement intégralement clos" => "v est de hauteur 1 "([7], § 4, prop. 9).

"v de hauteur 1 ". Soit $\frac{P(X)}{Q(X)} = \sum\limits_{n=0}^{\infty} a_n \ X^n$, normalisée, et $a_n \in A$, $\forall \ n \geqslant 0$. En nous plaçant dans une extension convenable de K, " $|a_n| \leqslant 1$, $\forall \ n \geqslant 0$ " => "Le rayon de convergence de la série est $\geqslant 1$ ", d'où les zéros du polynôme réciproque $Q^*(X)$ sont des entiers pour la valuation, et par suite $Q(X) \in A[X]$.

(d) Soient K un corps commutatif, et A une intersection d'anneaux de valuation de K de hauteur 1. Alors A est un anneau de Fatou.

En particulier, un anneau de Krull est un anneau de Fatou. Pour un anneau noethérien, être de Fatou équivaut à être intégralement clos.

- (e) Soient A un anneau de Fatou, de corps des quotients K . Soient K' une extension algébrique de K , A' la fermeture intégrale de A dans K' . Alors A' est un anneau de Fatou.
- 4. Groupe des unités de R(K).

4.1. THÉORÈME. - Soit K un corps commutatif de caractéristique zéro, et soit 9 le groupe des unités de R(K). Alors:

"
$$\mathfrak{A} = \sum_{n=0}^{\infty} a_n \ X^n \in \mathfrak{S}$$
 " \Longrightarrow " $\exists \ m \in \underline{\mathbb{N}}$, $m \geqslant 1$, $\exists \ \alpha_0$, ... , $\alpha_{m-1} \in K^*$ " tels que, pour $\mu = 0$, 1 , ... , $m-1$,
$$a_{\mu} \in K^*$$
 ,
$$a_{\mu+tm} = a_{\mu} \cdot \alpha_{\mu}^t \ , \quad \forall \ t \in \underline{\mathbb{N}} \ .$$

4.2. Considérons

$$\mathbb{X} = \{ \sum_{n=0}^{\infty} a_n X^n, a_n \in \underline{C}, a_n = \sum_{i=1}^{s} \phi_i(n) \alpha_i^n, \alpha_i \in \underline{C}^*, a_n \}$$

 $o_{\mathbf{z}}(\mathbf{z})$ fonction entière de type exponentiel minimal} ,

 $\mathbb R$ est une sous-algèbre de $\mathbb K(\underline{\mathbb C})$, contenant $\mathbb R(\underline{\mathbb C})$.

$$\begin{split} \mathbb{P}(\underline{\mathbb{C}}) &= \{ \sum_{n=0}^{\infty} \ \mathbf{a}_n \ \mathbf{X}^n \ , \ \mathbb{E} \ \mathbf{P}_0 \ , \ \mathbf{P}_1 \ , \ \cdots \ , \ \mathbf{P}_{m-1} \in \underline{\mathbb{C}}[\mathbf{X}] \ , \ m \geqslant 1 \ , \\ & \text{tels que} \ \ \mathbf{a}_{\underline{\mu}+t\underline{m}} = \mathbf{P}_{\underline{\mu}}(t) \ , \ \forall \ t \in \underline{\mathbb{N}} \ , \ \mu = 0 \ , 1 \ , \ldots \ , m-1 \} \ , \end{split}$$

 $\mathbb{P}(\underline{\mathbb{C}})$ est une sous-algèbre de $\mathbb{R}(\underline{\mathbb{C}})$.

PROPOSITION. - Si un élément de $\mathbb{P}(\underline{\mathbb{C}})$ se factorise dans \mathbb{R} , alors cette factorisation est dans $\mathbb{P}(\underline{\mathbb{C}})$.

De cette proposition résulte le théorème ; sa démonstration est basée sur certaines propriétés des fonctions entières de type exponentiel ([4]). Signalons les applications suivantes :

(a) Soit

$$\mathfrak{L}(\mathtt{K}) = \{ \boldsymbol{\Sigma} \; \mathbf{a_n} \; \boldsymbol{X^n} \; , \; \; \boldsymbol{\Xi} \; \mathbf{P_0} \; , \; \dots \; , \; \boldsymbol{P_{m-1}} \; \boldsymbol{\in} \; \boldsymbol{\mathbb{K}}[\mathtt{X}] \; , \; \; \boldsymbol{\Xi} \; \boldsymbol{\alpha_0} \; , \; \dots \; , \; \boldsymbol{\alpha_{n-1}} \; \boldsymbol{\in} \; \boldsymbol{\mathbb{K}} \; , \\ \text{tels que} \; \; \mathbf{a_{u+tm}} \; = \boldsymbol{P_u}(\mathtt{t}) \; \boldsymbol{\alpha_u^t} \; , \; \; \forall \; \boldsymbol{t} \; \boldsymbol{\in} \; \underline{\mathbb{N}} \} \; \; , \label{eq:local_localo$$

 $\mathfrak{L}(\mathtt{K})$ est une partie multiplicativement stable de $\mathfrak{R}(\mathtt{K})$.

Si un élément de $\mathfrak{L}(\underline{\mathfrak{C}})$ se factorise dans \mathbb{R} , alors cette factorisation est dans $\mathfrak{R}(\underline{\mathfrak{C}})$.

- (b) \mathbb{R} et $\mathbb{R}(\underline{\mathbb{C}})$ ont même groupe d'unités.
- (c) Soit $P(X) \in K[X]$, K de caractéristique zéro et algébriquement clos. L'équation

$$T^{S} = P(\theta)$$

a des solutions dans $\Re(K)$ si, et seulement si, P est la puissance s-ième d'un polynôme Q de K[X]. Ces solutions sont alors de la forme $\Gamma \cdot Q(\theta)$ où $\Gamma = \sum\limits_{n} \zeta_{n} X^{n}$, (ζ_{n}) suite périodique de racines s-ième de l'unité.

(d) Soit $\mathfrak{A} \in \mathbb{R}^1(\underline{\mathbb{C}})$; l'endomorphisme $T \longmapsto \mathfrak{A}.T$ de $\mathbb{R}^1(\underline{\mathbb{C}})$ est une convolution: $\mathfrak{A}(z) = \mathfrak{A}.T(z) = \frac{1}{2!\pi} \int_{\Gamma} \mathfrak{A}(x) \ T(\frac{z}{x}) \, \frac{\mathrm{d}x}{x} ,$

où Γ est une courbe simple convenablement choisie.

Pour qu'une telle convolution soit un automorphisme de $\mathbb{R}^1(\underline{\mathfrak{C}})$ à noyaux \mathfrak{A} et \mathfrak{A}^{-1} dans \mathbb{R} (c'est-à-dire tels que $\mathfrak{A}(z)$ et $\mathfrak{A}^{-1}(z)$ soient des fonctions holomorphes dans $\underline{\mathfrak{C}}$ privé d'un nombre fini de points autres que l'origine), il faut et il suffit que \mathfrak{A} soit de la forme

$$\mathfrak{A}(X) = \sum_{\mu=0}^{m-1} \frac{a_{\mu} X^{\mu}}{1 - \alpha_{\mu} X^{m}}, \qquad a_{\mu} \in \mathfrak{C}^{*}, \quad \alpha_{\mu} \in \mathfrak{C}^{*}.$$

5. Quotient dans R(K).

Soit K un corps commutatif, de caractéristique zéro. Il s'agit d'étudier dans R(K) l'équation B.T = I.

Pour $B = \sum_{n=1}^{\infty} b_n X^n$, posons $I(B) = \{n, b_n = 0\}$; nous supposerons $I(B) = \emptyset$, cas auquel nous pouvons toujours nous ramener par un théorème de Mahler. Nous posons alors $a_n = b_n c_n$.

1° THÉORÈME de Pólya-Cantor ([8]). - Si $\mathfrak{B} \in \mathfrak{L}(K)$, et c_n entier algébrique (sur \underline{Z}) pour tout n, alors $C = \sum_{n} c_n X^n \in R(K)$.

3º DÉFINITION.

(a) Une suite $\binom{a}{n}$ de $\mathfrak Q$ sera dite de Pólya, si presque toutes les valuations de $\mathfrak Q$ sont triviales sur la suite.

 $\mathbb{S}((a_n))$ désignera l'ensemble fini des valuations exceptionnelles.

Une suite de nombres algébriques (a_n) est de Pólya, si la suite $(\mathbb{N}(a_n))$, où N(a) est la norme absolue de a , est de Pólya dans Q .

(b) Une série $\sum_{n=0}^{\infty} a_n x^n$, $a_n \in K$, sera dite une fonction de Pólya, s'il existe un entier m $\geqslant 1$, des éléments α_0 , ... , α_{m-1} de K tels que

pour
$$\mu = 0$$
, 1, ..., $m-1$, $a_{\mu+tm} = a \cdot \alpha^{t}_{\mu}$ pour tout $t \in \underline{\mathbb{N}}$.

4° Soit K un corps commutatif, extension de $\mathfrak Q$. Soient $\mathfrak A\in \mathfrak R(K)$, $\mathfrak B\in \mathfrak R(K)$,

 $I(\mathfrak{B}) = \emptyset \quad \text{et} \quad a_n = b_n \ c_n$ Si (c_n) est une suite de Pólya de \mathfrak{Q} , alors $C = \sum_n c_n \ X^n$ est une fonction de

Pour $B = \delta$, nous retrouvons un résultat de Pólya ([15]).

COROLLAIRE. - Soit (a_n) une suite de Pólya de Q. Alors:

$$\| \, \mathcal{X} = \sum_{n=0}^{\infty} \, a_n \, \, X^n \in \mathcal{R}(\underline{Q}) \, \| \, \iff \begin{cases} x_n = \sum_{n=0}^{\infty} \, |a_n|_p \, \, X^n \in \mathcal{R}(\underline{Q}) \, , \quad \text{pour tout p premier,} \\ \text{et} \\ x_0 = \sum_n \, \operatorname{sg}_n(a_n) \, \, X^n \in \mathcal{R}(\underline{Q}) \, . \end{cases}$$

La démonstration du théorème 4 se fait par récurrence sur card $S((c_n))$ et s'appuie sur les deux lemmes :

5° LEMME (a). - Soit K un corps commutatif de caractéristique zéro. Soient \mathfrak{A} , $\mathfrak{B}\in\mathfrak{R}(\mathtt{K})$, et $\mathtt{a}_{\mathtt{n}}=\mathtt{b}_{\mathtt{n}}\ \mathtt{c}_{\mathtt{n}}$. Si $(\mathtt{c}_{\mathtt{n}})$ ne prend qu'un nombre fini de valeurs distinctes, alors elle est périodique.

LEMME (b). - Soit $\mathfrak{A} = \sum_{n} a_n X^n \in \mathbb{R}(\mathfrak{Q})$, et soit p un nombre premier. Alors il existe deux entiers m_0 et m, $m \ge 1$, tels que la fonction $t \longrightarrow v_p(a_{m_0+tm})$ soit affine.

6º THÉORÈME. - Soient k un corps de nombres algébriques, et (a) une suite de Pólya de k . Alors :

"
$$\mathfrak{A} = \sum_{n=0}^{\infty} a_n X^n \in \mathfrak{R}(k)$$
 " \iff " \mathfrak{A} est une fonction de Pólya" .

C'est l'extension à un corps de nombres d'un théorème de Pólya ([15]).

<u>Démonstration</u>. - Supposons $a_n \in k$ pour tout n, et soit N l'application norme de k dans Q. Comme $\mathbb{B}=\sum\limits_{n=0}^{\infty}\,\mathbb{N}(a_n)\,\,\mathbb{X}^n=\prod\limits_{\sigma\in Gal(k/Q)}\,\sigma\mathbb{I}$, $\mathbb{B}\in\mathbb{R}(Q)$, et c'est une fonction de Pólya, donc inversible dans R(Q) . Il en résulte que A est inversible dans $\Re(k)$, \Im est donc une fonction de Pólya par le théorème 4.1.

7° Signalons les applications suivantes:

(a) Soit $a \in Q^*$, $a \neq \pm 1$, soit (o(n)) une suite de Z. Alors

tel que, pour $\mu = 0$, 1, ..., m-1,

 $t \mapsto \phi(u + tm)$ est affine •

(b) Soit $\mathbb{X} = \sum_{n=0}^{\infty} a_n \, \mathbb{X}^n \in \Re(Q_p)$, $a_n \neq 0$ pour tout n, $a_n = p$ b_n . Alors:

$$\frac{\sum_{n} |a_{n}|_{p} X^{n} \in \Re(\underline{Q}) \iff \sum_{n} b_{n} X^{n} \in \Re(\underline{Q}_{p}).$$

De même, soit $\mathfrak{A} \in \mathbb{R}(\underline{\mathbb{R}})$. Alors:

$$\begin{array}{c|c} \sum |a_n| \ X^n \in \Re(\underline{\mathbb{R}}) & \Longleftrightarrow & \sum \ \mathrm{sgn}(a_n) \ X^n \in \Re(\underline{\mathbb{R}}) \end{array} .$$

- (c) Soit $\mathcal{I} = \sum_{n=1}^{\infty} \frac{\alpha_n}{\beta_n} X^n \in \mathbb{R}(\underline{Q})$, $\alpha_n \in \underline{\mathbb{Z}} \{0\}$, $\beta_n \in \underline{\mathbb{N}} \{0\}$, $(\alpha_n, \beta_n) = 1$. Si $\mathbb{S}((\alpha_n))$ est fini, et $\mathbb{S}((\alpha_n)) \cap \mathbb{S}((\beta_n)) = \emptyset$, alors $\sum_{n=1}^{\infty} \alpha_n X^n$ et $\sum_{n=1}^{\infty} \beta_n X^n$ sont des fonctions de Pólya.
 - (d) Soit (a_n) une suite d'entiers algébriques non nuls. Alors :

$$\sum_{n} \frac{\underline{x}^{n}}{\underline{a}_{n}} \in \mathbb{R}(\overline{\underline{g}}) \implies \sum_{n} \underline{a}_{n} \ \underline{x}^{n} \in \mathbb{R}(\overline{\underline{g}}) .$$

6. Suites de S-unités.

Soient k un corps de nombres algébriques, M l'ensemble de ses valuations, S_{∞} l'ensemble de ses valuations archimédiennes, S une partie finie de M contenant S_{∞} .

Soient \underline{J} le groupe des idèles de k, $\underline{J}_S = \prod_{v \in S} k_v^* \cdot \prod_{v \notin S} U_v$ le groupe des S-idèles de k; k se plonge canoniquement dans \underline{J} , soit k_S l'image réciproque de \underline{J}_S ; k_S est le groupe des S-unités de k.

Toute suite de S-unités de k est une suite de Pólya.

- 1º THÉORÈME. - Soient k un corps de nombres, a son anneau d'entiers, u son groupe d'unités. Alors :

- (a) $\Re(k)$ est une $\Re(\mathfrak{Q})$ -algèbre entière, libre de type fini, de rang $d = [k:\mathfrak{Q}]$.
- (b) $\Re(\Im)$ est une $\Re(\underline{Z})$ -algèbre entière, libre de type fini, de rang d .
- (c) $\mathbb{R}(\mathbb{Q}$, k) est le groupe des unités de $\mathbb{R}(\mathbb{Q})$, et

$$\Re(\mathbf{u}, \mathbf{k}) \simeq \mathbb{S}_0^{\mathbf{r}} \times \mathbb{S}_1^{\mathbf{r}}$$
,

où \mathbb{S}_0^* est un groupe commutatif dont tous les éléments sont d'ordre \leqslant s (s ne dépendant que de k), \mathbb{S}_1 un groupe abélien, r le nombre de Dirichlet de k .

(a) et (b) résultent de la proposition 2.1 ; $\Re(\mathfrak{U}$, k) est le groupe des unités de $\Re(\mathfrak{G})$, par le corollaire de la proposition 2.4.

Soient ϵ une unité fondamentale de k , $(\phi(n))$ une suite de Z , alors :

"
$$\sum_{n=0}^{\infty} \epsilon^{\phi(n)} X^n \in \Re(k)$$
 " $<=>$ " $\exists m \in N$, $m \geqslant 1$ " ,

tel que, pour $\mu = 0$, 1, ..., m-1,

t \longmapsto $\phi(\mu$ + tm) est une fonction affine .

Pour un corps commutatif K, définissons:

$$S_{j}(K) = \{\sum_{n=0}^{\infty} a_{n} X^{n}, E P_{0}, \dots, P_{m-1} \in K[X]\}$$

tels que deg $P_{ij} \leqslant j$ et $a_{ij+tm} = P_{ij}(t)$ pour tout $t \in M$.

Si $E \subseteq K$,

$$S_{\mathbf{j}}(\mathbf{E}, \mathbf{K}) = \{ \sum a_{\mathbf{n}} \mathbf{X}^{\mathbf{n}} \in S_{\mathbf{j}}(\mathbf{K}), a_{\mathbf{n}} \in \mathbf{E}, \forall \mathbf{n} \in \mathbf{M} \}$$
.

 $\mathbb{S}_{\mathbf{j}}(K)$ est un sous-groupe additif de $\mathbb{R}(K)$, $\mathbb{S}_{0}(K)$ est une sous-algèbre de $\mathbb{R}(K)$. Soit ϵ une unité fondementale de k, alors le groupe multiplicatif

$$\mathbb{R}_{\varepsilon} = \{ \sum_{n=0}^{\infty} \varepsilon^{0(n)} X^{n} \in \mathbb{R}(k) \}$$

est isomorphe au groupe additif $\mathbb{S}_1(\mathbf{Z},\mathbf{Q})$, par l'application

$$\sum_{n} \varepsilon^{\phi(n)} X^{n} \longmapsto \sum_{n} \phi(n) X^{n} .$$

Si G est un sous-groupe multiplicatif fini de k , d'ordre s , $\Re(G$, k) est isomorphe à un sous-groupe S_0^1 de S_0^1 dont tous les éléments satisfont à $T^S=\delta$.

Si
$$\sum_{n} a_n X^n \in \mathbb{R}(u, k)$$
,

$$a_n = \zeta_n \epsilon_1^{\varphi_1(n)} \cdots \epsilon_r^{\varphi_r(n)}$$

les $\varepsilon_{\mathbf{j}}$ étant des unités fondamentales de \mathbf{k} , $\zeta_{\mathbf{n}}$ une racine de l'unité, par le théorème 4.1, pour chaque \mathbf{j} , $\sum_{\mathbf{j}} \varepsilon_{\mathbf{j}}^{(\mathbf{n})} \mathbf{x}^{\mathbf{n}} \in \Re(\mathbf{k})$ et $\sum_{\mathbf{n}} \zeta_{\mathbf{n}} \mathbf{x}^{\mathbf{n}} \in \Re(\mathbf{k})$.

Signalons que lorsque K est algébriquement fermé, $\mathbb{S}_0^-(K)$ est intégralement fermée dans $\Re(K)$.

2º COROLLAIRES.

- (a) Soient $\overline{\mathbb{Q}}$ la clôture algébrique de \mathbb{Q} , $\overline{\mathbb{Q}}$ la fermeture intégrale de Z dans $\overline{\mathbb{Q}}$, $\overline{\mathbb{U}}$ son groupe d'unités. Alors $\Re(\overline{\mathbb{U}},\overline{\mathbb{Q}})$ est le groupe des unités de $\Re(\overline{\mathbb{U}})$. Γ étant le groupe des racines de l'unité, $\Re(\Gamma,\overline{\mathbb{Q}})$ est le groupe de torsion de $\Re(\overline{\mathbb{U}},\overline{\mathbb{Q}})$.
- (b) Soit (a_n) une suite d'unités algébriques vérifiant une relation de récurrence linéaire à coefficients constants. Alors il existe un entier m $\geqslant 1$, des unités α_0 , ..., α_{m-1} tels que, pour $\mu=0$, 1, ..., m 1,

$$a_{\mu+tm} = a_{\mu} \cdot \alpha_{\mu}^{t}$$
, $\forall t \in N$.

3° THÉORÈME. - Soient S une partie finie de M_k , contenant S_{∞} , ℓ le nombre des S-unités fondamentales de k_S . Alors $S_S = \Re(k_S, k)$ est un sous-groupe multiplicatif du groupe des unités S de $\Re(k)$, isomorphe à $S_0' \times S_1^{\ell}$, et $S = \lim_{S \to S} S_S$.

BIBLIOGRAPHIE

- [1] BENZAGHOU (Benali). Sur l'algèbre des fractions rationnelles de Hadamard, C. R. Acad. Sc. Paris, t. 266, 1968, Série A, p. 652-654.
- [2] BENZAGHOU (Benali). Sur le quotient de Hadamard de deux fractions rationnelles, C. R. Acad. Sc. Paris, t. 267, 1968, Série A, p. 212-214.
- [3] BENZAGHOU (Benali). Sur les suites d'unités algébriques vérifiant une relation de récurrence linéaire, C. R. Acad. Sc. Paris, t. 267, 1968, Série A, p. 913-915.
- [4] BENZAGHOU (Benali). Sur l'algèbre de Hadamard des fractions rationnelles, Séminaire Delange-Pisot-Poitou: Théorie des nombres, 9e année, 1967/68, nº 15, 16 p.
- [5] BENZAGHOU (Benali). Sur le quotient de Hadamard de deux fractions rationnelles, Séminaire Delange-Pisot-Poitou: Théorie des nombres, 10e année, 1968/69, nº 1, 14 p.
- [6] BENZAGHOU (Benali). Anneaux de Fatou, Séminaire Delange-Pisot-Poitou: Théorie des nombres, 10e année, 1968/69, nº 9, 8 p.
- [7] BOURBAKI (N.). Algèbre commutative. Chapitre 6: Valuations. Paris, Hermann, 1964 (Act. scient. et ind., 1308; Bourbaki, 30).
- [8] CANTOR (David G.). On arithmetic properties of coefficients of rational functions, Pacific J. of Math., t. 15, 1965, p. 55-58.
- [9] DRESS (François). Familles de séries formelles et ensembles de nombres algébriques, Ann. scient. Ec. Norm. Sup., 4e série, t. 1, 1968, p. 1-44.
- [10] FATOU (P.). Séries trigonométriques et séries de Taylor, Acta Math., Uppsala, t. 30, 1906, p. 335-400.

- [11] HADAMARD (Jacques). Théorème sur les séries entières, Acta Math., Uppsala, t. 22, 1899, p. 55-63.
- [12] MAHLER (K.). On the Taylor coefficients of rational functions, Proc. Cambridge phil. Soc., t. 52, 1956, p. 39-48.
- [13] PISOT (C.). Conférences données à l'Institut Fourier de Grenoble, en 1959 (multigr.).
- [14] PISOT (Charles). La répartition modulo 1 et les nombres algébriques, Ann. Sc. Norm. Sup. Pisa, Serie 2, t. 7, 1938, p. 205-248.
- [15] PÓLYA (G.). Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen, J. für reine und angew. Math., t. 151, 1921, p. 1-31.

(Texte regu le 25 mars 1969)

Benali BENZAGHOU M. Ass. Fac. Sc. Alger Maison des Etudiants arméniens 57 boulevard Jourdan 75 - PARIS 14