SÉMINAIRE DUBREIL. ALGÈBRE ET THÉORIE DES NOMBRES

MARIE-PAULE MALLIAVIN

Quelques résultats sur les modules de différentielles

Séminaire Dubreil. Algèbre et théorie des nombres, tome 21, n° 2 (1967-1968), exp. n° 19, p. 1-9

http://www.numdam.org/item?id=SD 1967-1968 21 2 A10 0>

© Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1967-1968, tous droits réservés.

L'accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

20 mai 1968

QUELQUES RESULTATS SUR LES MODULES DE DIFFERENTIELLES

par Marie-Paule MALLIAVIN

Tous les anneaux considérés étant commutatifs noethériens et possédant un élément unité, tous les modules sur de tels anneaux étant unitaires et de type fini, si M est un module, sur un anneau A local, on appelle M-suite ou suite M-régulière toute famille x_1 , x_2 , ..., x_s d'éléments de l'idéal maximal $\mathfrak M$ de A telle que x_s n'est pas diviseur de zéro dans

$$\frac{M}{x_1 M + \dots + x_{i-1} M} \cdot$$

La profondeur ou codimension de M est la longueur d'une M-suite maximale ; c'est aussi le plus petit entier $i \geqslant 0$ pour lequel

$$\operatorname{Ext}_{A}^{i}(k, M) \neq 0$$
, où $k = \frac{A}{\mathfrak{M}}$

On a toujours l'inégalité codim $\mathbb{M} \leqslant \dim \mathbb{M}$, où dim \mathbb{M} désigne la <u>dimension du support</u> de \mathbb{M} considéré comme sous-espace de Spec(A) (on convient de poser dim $0 = +\infty$). Un module de <u>Cohen-Macaulay</u> est un module dont la codimension est égale à la dimension. En particulier, un anneau de Cohen-Macaulay A est un anneau dont la codimension est égale à la dimension (de Krull).

La <u>profondeur</u> (ou <u>grade</u>) d'un idéal 3 de A est la longueur de la plus grande des A-suites formées d'éléments de 3.

Si M est un A-module, si p est un idéal premier de A et si x_1 , ..., x_s est une M-suite constituée par des éléments de p, alors l'image canonique de la suite $\{x_1,\ldots,x_s\}$ dans A_p est une Mp-suite. Appliquant cette remarque au module M=A, on voit que $\operatorname{prof}(p) \leqslant \operatorname{codim}(A_p) \leqslant \operatorname{ht}(p)$, où $\operatorname{ht}(p)$ représente la $\operatorname{\underline{hauteur}}$ de l'idéal p (i. e. la dimension de A_p). Dans un anneau de Macaulay, hauteur et profondeur de p coïncident.

Si M est un A-module, on notera M son dual $\operatorname{Hom}_A(M,A)$ et M** son biddual. Si p est un idéal premier de A, on peut identifier les Ap-modules (M) et (Mp) que l'on notera Mp. Le module M est réflexif si M est isomorphe à M** pour l'application canonique M \to M**.

PROPOSITION 1. - Soit A un anneau tel que A soit régulier pour tout idéal premier p de profondeur ≤ 1 . Soit M un A-module tel que tout élément de A, non diviseur de zéro dans A, se divise par zéro dans M. Alors les conditions suivantes sont équivalentes :

- (i) M est réflexif ;
- (ii) On a $\mathbb{M} = \cap \mathbb{M}_p$, où p parcourt les idéaux premiers de profondeur 1 de A et où \mathbb{M} et les \mathbb{M}_p sont plongés dans le S-module semi-simple $\mathbb{S} \otimes_{\mathbb{A}} \mathbb{M}$, où \mathbb{S} est l'anneau total des fractions de A;
 - (iii) Toute A-suite (a, b) à deux éléments est une M-suite.

On vérifie que l'anneau A satisfait au critère de normalité de Serre ; i. e. vérifie les conditions suivantes :

(R1) si dim Ap
$$\leqslant$$
 1 , alors Ap est régulier ;

(S2) si dim (Ap)
$$\geqslant$$
 2 , alors $\operatorname{prof}(A_p) \geqslant$ 2 , où $\mathfrak{p} \in \operatorname{Spec}(A)$.

Par suite, A est réduit et intégralement fermé dans l'anneau S. On a alors un isomorphisme canonique

$$\mathtt{A}\simeq \overset{\mathtt{n}}{\underset{\mathtt{i=1}}{\sqcap}}\ \mathtt{A}_{\mathtt{i}}$$
 ,

où $A_i = A_{\mathfrak{p}_i} = A/\mathfrak{p}_i$ et où \mathfrak{p}_1 , ..., \mathfrak{p}_n sont les idéaux premiers minimaux de A. Chaque anneau A_i étant intégralement fermé dans son corps des quotients K_i , S étant le produit des K_i , et connaissant la proposition dans le cas d'intégrité, on a $A = \cap A_{\mathfrak{p}}$, où $\mathfrak{p} \in \operatorname{Spec}(A)$ et $\operatorname{prof}(\mathfrak{p}) = 1$.

La démonstration de la proposition est alors calquée sur celle de la proposition 1 de [6].

De même on démontre comme dans [6] la proposition suivante :

PROPOSITION 2. - Si A est un anneau local, si M est un A-module et si q est un entier $\geqslant 0$, les conditions suivantes sont équivalentes :

- (i) $_{q} \xrightarrow{On \ a} prof(M_{p}) \geqslant inf(q, Prof(p)), \underline{pour \ tout} p \in Spec(A)$;
- (ii) Toute A-suite de longueur \leq q est une M-suite.

On notera alors (a_q) l'une de ces deux conditions $((a_0)$ étant la condition vide). Par exemple, dans le cas particulier d'un anneau A régulier, les conditions (a_q) procèdent à une classification des A-modules : (a_1) étant la condition d'être dans torsion, (a_n) celle d'être libre $(n = \dim A)$.

Il est facile de vérifier la proposition suivante :

PROPOSITION 3. - Si A est un anneau local, M un A-module et $0 \rightarrow M \rightarrow F \rightarrow U \rightarrow 0$ une suite exacte où F est libre; alors U vérifie la condition (a_s) (s entier $\geqslant 0$) si, et seulement si, M vérifie (a_{s+1}) .

Si M est un A-module, il est appelé r-ième module de syzygies s'il existe une suite exacte

$$0 \rightarrow M \rightarrow P_0 \rightarrow P_1 \rightarrow \cdots \rightarrow P_{r-1} \quad ,$$

où les P_i sont projectifs. Pour des raisons de cohérence, j'ai appelé r-ième module de syzygies, ce que H. BASS [3] nomme (r-1)-ième module de syzygies.

En utilisant la proposition 3 et en raisonnant par récurrence, on voit que

PROPOSITION 4. - Si A est un anneau local, M un A-module, q un entier $\geqslant 1$. Alors si M est un q-ième module de syzygies, alors M vérifie la condition (a_q).

PROPOSITION 5. - Soit M un module sur un anneau A local de Cohen-Macaulay. Soit q un entier $\geqslant 1$ · On suppose que A est régulier pour tout idéal premier p de profondeur $\leqslant q-1$ · Si M vérifie la condition (a_q) , alors M est un q-ième module de syzygies.

<u>Preuve.</u> - Si q=1, prof(p)=ht(p)=0. Donc A_p est un corps. Par suite A est réduit. Donc l'anneau des fractions S de A est produit direct fini de corps K_i . Si M vérifie (a_1) , on a : $M \subset S \otimes_A M$. Alors $S \otimes_A M$ est un module sur un anneau semi-simple, donc projectif, donc facteur direct d'un S-module libre L dont on peut choisir une base, de sorte que M soit contenu dans un A-module libre F.

Supposons $q \geqslant 2$ et la proposition prouvée pour q-1 . Soit

$$0 \rightarrow U \rightarrow F_0 \rightarrow M^* \rightarrow 0$$

une suite exacte de A-modules, où F_0 est libre, et où M^* désigne le dual de M. Puisque M vérifie en particulier (a_2) , il est réflexif d'après la proposition 1. D'où la suite exacte :

$$0 \to \mathbb{M} \to F_0^* \to U \to \operatorname{Ext}_A^1(\mathbb{M}^*, A) \to 0 .$$

Si $prof(p) \leqslant q-1$, alors $prof(M_p) \geqslant prof(p) = ht(p)$ puisque M vérifie (a_q) . Donc $prof(M_p) = ht(p)$, et puisque A est régulier, M est libre. Donc M p

est libre ainsi que U_p et U_p^* et $\operatorname{Ext}_A^1(M_p^*$, $A_p)=0$. On a donc $0 \to M \to L_0 \to V \to 0$,

où l'on pose $L_0 = F_0^*$, $V = Im(F_0^* \rightarrow U^*)$. On a démontré que $V_p = U_p^*$ pour $prof(p) \leqslant q-1$.

Soit p un idéal premier de profondeur ≥ q et supposons que

$$prof(V_{\mathfrak{p}}) < Inf[prof(\mathfrak{p}), q-1]$$
.

Alors

$$prof(V_{\mathfrak{p}}) < q - 1 < prof(\mathfrak{p}) = ht(\mathfrak{p}) = prof(L_{O_{\mathfrak{p}}})$$
.

D'où

$$prof(M_{\mathbf{p}}) = 1 + prof(V_{\mathbf{p}}) < q$$
,

ce qui contredit l'hypothèse (a_q) . Par conséquent V vérifie (a_{q-1}) , c'est donc un q-ième module de syzygies et on a la suite exacte :

$$0 \rightarrow V \rightarrow L_1 \rightarrow \dots \rightarrow L_{q-1}$$
, où les L_i sont libres.

D'où

$$0 \to M \to L_0 \to \dots \to L_{q-1}$$

C. Q. F. D.

Soit R un anneau local régulier. Appelons idéal de Cohen-Macaulay tout idéal premier p de A tel que

$$prof(R/p) + prof(p) = n = dim R$$

ou encore, puisque R est régulier,

$$dh_R(R/p) = prof(p) (= ht(p))$$
.

$$ht(\mathfrak{h}_{R_q}) \leq dh_{R_q}(\frac{R_q}{\mathfrak{h}_{R_q}}) dh_{R}(R/\mathfrak{h})$$
,

car R est régulier (cf. propositions 1-6 et 2-5 de [2]).

Rappelons le résultat suivant (cf. théorème 1-2 de [1]).

PROPOSITION 6. - Soient A un anneau local, M et N deux A-modules \neq (0) tels que dh M < ∞ . Soit q le plus petit entier \geqslant 0 tel que Tor $_{q}^{A}(M$, N) \neq 0 .

Alors si l'une des deux conditions suivantes est satisfaite

- (i) $\operatorname{codim}_{A}\operatorname{Tor}_{Q}^{A}(\mathbb{M},\mathbb{N})\leqslant 1$,
- (ii) q = 0,

on a l'égalité

$$\operatorname{codim}_{A}(N) = \operatorname{codim}_{A} \operatorname{Tor}_{q}^{A}(M, N) + \operatorname{dh}_{A}(M) - q$$
.

PROPOSITION 7. - Soient R un anneau local régulier de dimension $n \geqslant 1$, M un A-module, q un entier, $1 \leqslant q \leqslant n$. Les conditions suivantes sont équivalentes :

(i) M <u>vérifie</u> (a_q);

(ii) Si p est un idéal de Cohen-Macaulay de hauteur \leqslant q + i , alors $\text{Tor}_{1+i}^R(\mathbb{M}$, $\frac{R}{\mathfrak{p}})$ = (0) et ceci pour i = 0 , 1 , ... , n - q . D'après [4] on a alors

$$\operatorname{Tor}_{\mathbf{j}}^{R}(\mathbb{N}, \frac{R}{p}) = 0$$
 $\operatorname{\underline{pour}} \quad \mathbf{j} \geq 1 + \mathbf{i}$.

Preuve.

(ii) \Longrightarrow (i) . Posons s=n-q . Si s=0 , alors M est libre et vérifie (a_n) . Si s>0 , et si la proposition est démontrée pour s-1 , soit p un idéal de Cohen-Macaulay de hauteur $\leqslant (q+1)+i=q+(1+i)$, et soit

$$0 \rightarrow N \rightarrow L \rightarrow M \rightarrow 0$$

une suite exacte dans laquelle L est libre; alors

$$\operatorname{Tor}_{1+(1+i)}^{R}(\mathbb{N} , \frac{\mathbb{R}}{\mathfrak{p}}) = \operatorname{Tor}_{1+i}^{R}(\mathbb{N} , \frac{\mathbb{R}}{\mathfrak{p}}) = (0) , \qquad \text{pour } i = 0 , 1 , \ldots , n-q-1 .$$

D'après l'hypothèse de récurrence, N vérifie (a_{q+1}) . Donc M vérifie (a_q) .

(i) \Longrightarrow (ii) . On procède encore par récurrence, sur s = n - q, le cas s = 0 étant trivial.

Supposons s > 0 et le résultat démontré pour s - 1 . Soit $\mathfrak p$ un idéal de Cohen-Macaulay de hauteur $\leqslant q+i=n-s+i$,

$$N = Tor_{1+i}^{R}(M, \frac{R}{p})$$
.

Si q est un idéal premier de R , $\mathfrak{p} \not\equiv \mathfrak{q}$, alors N = (0) . Si q est un idéal premier de R , $\mathfrak{q} \not= \mathfrak{M}$ (où \mathfrak{M} est l'idéal maximal de R), alors

$$N_q = Tor_{1+i}^R(M_q, \frac{R_q}{pR_q})$$
.

Mais M vérifie la condition (a_q) , où q=ht(q) – t=n – s , et $t \ensuremath{\not<} = s$; de plus pR $_q$ est un idéal de Cohen-Macaulay de R $_q$ de hauteur $\leqslant n$ – s + i .

D'après l'hypothèse de récurrence, $N_{q} = (0)$. Donc codim N = (0) . On a aussi

$$\operatorname{Tor}_{2+i}^{\mathbb{R}}(\mathbb{M}, \frac{\mathbb{R}}{\mathfrak{p}}) = 0$$
.

En effet, si $0 \to \mathbb{N} \to \mathbb{F} \to \mathbb{M} \to 0$ est une suite exacte dans laquelle \mathbb{F} est libre, on a, puisque \mathbb{N} vérifie (a_{q+1}) et que $\operatorname{ht}(\mathfrak{p}) \leqslant q+1+i$,

$$Tor_{1+i}^{R}(N, \frac{R}{p}) = 0$$
.

D'où

$$\operatorname{Tor}_{2+i}^{\mathbb{R}}(\mathbb{M}, \frac{\mathbb{R}}{\mathfrak{p}}) = 0$$
.

Par suite, si $\operatorname{Tor}_{1+i}^{\mathbb{R}}(\mathbb{M}\ ,\frac{\mathbb{R}}{\mathfrak{p}})$ était différent de (0), on aurait

codim
$$M = dh_R \frac{R}{p} - (1 + i) = ht(p) - (1 + i)$$
.

Comme M vérifie (a_q) , on aurait $ht(\mathfrak{p})-(1+i)\geqslant inf(n,q)$, d'où $ht(\mathfrak{p})\geqslant q+1+i$, ce qui contredit le choix de \mathfrak{p} . Donc $Tor_{1+i}^R(\mathbb{M},\frac{R}{\mathfrak{p}})=0$.

Soit A un anneau. Appelons G(A) la classe des A-modules réflexifs tels que

$$\operatorname{Ext}_{\Lambda}^{\mathbf{i}}(\mathbb{M}, \Lambda) = \operatorname{Ext}_{\Lambda}^{\mathbf{i}}(\mathbb{M}^{*}, \Lambda) = 0$$
, pour $i > 0$.

On dira que M est de G-dimension n s'il existe une suite exacte

$$0 \to X_n \to \dots \to X_0 \to M \to 0 ,$$

où les X_i sont des modules de la classe G(A), et s'il n'en existe pas de plus courte :

PROPOSITION 8. - <u>Une condition nécessaire et suffisante pour qu'un anneau local</u>
A <u>soit un anneau de Gorenstein est que tout module de type fini sur</u> A <u>soit de</u>
G-dimension finie.

Dand ce cas la G-dimension du module M est alors le plus grand entier i tel que

$$\operatorname{Ext}^{\mathbf{i}}_{A}(M,A) \neq 0$$
.

Soient A un anneau, M un A-module, $F_1 \to F_0 \to M \to 0$ une présentation projective de M . On en déduit une suite exacte

$$0 \rightarrow M^* \rightarrow F_0^* \rightarrow F_1^* \rightarrow D(M) \rightarrow 0$$

où D(M) est le conoyau de la flèche $F_0^* \to F_1^*$

On dit que le module M est sans q-torsion si

$$\operatorname{Ext}_{\Lambda}^{\mathbf{i}}[D(M), \Lambda] = 0$$
, pour $i = 1, 2, \dots, q$.

Cette propriété est indépendante de la présentation de M choisie.

On trouvera cette notion développée dans [7] ainsi que la démonstration des propositions suivantes :

PROPOSITION 9. - Les conditions suivantes sont équivalentes :

- (i) M est sans q-torsion;
- (ii) Il existe une suite exacte $0 \to M \to F_0 \to F_1 \to \cdots \to F_{q-1}$ (où les modules F_i sont libres) telle que la suite

$$F_{q-1}^* \rightarrow F_{q-2}^* \rightarrow \cdots \rightarrow F_0^* \rightarrow M^* \rightarrow 0$$

est exacte.

PROPOSITION 10. - Si M est un A-module de type fini et de G-dimension finie, alors M est un k-ième module de syzygies si, et seulement si, M est sans k-torsion. ([7], proposition 7.)

Regroupant ces résultats, on obtient la proposition suivante :

PROPOSITION 11. - Soit A un anneau local de Macaulay tel que A soit régulier pour tout idéal premier q de profondeur \leq q - 1 , où q est un entier \geq 1 . Soit M un A-module de type fini et de G-dimension finie. Alors les conditions suivantes sont équivalentes :

- (i) M vérifie la condition (a_q) ;
- (ii) M est un q-ième module de syzygies ;
- (iii) M est sans q-torsion.

Dans toute la suite, k désignera un corps parfait, R une k-algèbre localisée d'une k-algèbre de type fini réduite.

On notera Diff(k, R) le R-module des k-différentielles de R. Le dual de Diff(k, R) peut être identifié au R-module Der(k, R) des k-dérivations de R dans R.

On appellera <u>lieu singulier</u> de R l'ensemble $\{p \in Spec(R) ; R_p \text{ n'est pas régulier} \}$.

L'anneau R est <u>régulier</u> si, et seulement si, Diff(k, R) est un R-module libre. Si R est une intersection complète, alors

$$dh_{R}(Diff(k, R)) \leqslant 1$$
.

La proposition suivante est due à S. LICHTENBAUM et SCHLESSINGER.

PROPOSITION 12. - Si R est une intersection complète, le lieu singulier de R est Supp(N), où N est le R-module défini de la manière suivante.

On considère une présentation libre de Diff(k, R)

$$0 \rightarrow F_1 \rightarrow F_0 \rightarrow Diff(k, R) \rightarrow 0$$

que l'on dualise

$$0 \rightarrow \text{Der}(k, R) \rightarrow F_0^* \rightarrow F_1^* \rightarrow N \rightarrow 0$$

et N = D(Diff(k, R)).

<u>Preuve</u>. - Si $p \in \text{Supp N}$, alors $0 \neq N_p$ et $N_p = \text{Ext}_1^{R_p}(\text{Diff}(k, R_p), R_p)$. Donc $\text{Diff}(k, R_p)$ n'est pas libre et R_p n'est pas régulier.

Inversement, si R n'est pas régulier, alors Diff(k , R n) n'est pas projectif. D'où $\text{Ext}_1^{\mathfrak{p}}(\text{Diff}(k , R_p) , R_p) \neq 0$, d'après le lemme suivant :

LEMME. - Si A est un anneau, M un A-module de dimension homologique ≤ 1 , si $\operatorname{Ext}^1_A(\mathbb{N}$, A) = 0, alors dhM = 0.

La démonstration se trouve dans [8].

Enfin rappelons que si M est un A-module, on appelle grade de M la profondeur de l'annulateur de M. On démontre que

grade de
$$M = \inf_{p \in \text{Supp}(M)} \{ \text{prof}(p) \}$$
.

Les cas q=1, 2 étant traités, on peut supposer q>2. Alors Diff(k,R) vérifie la condition $\binom{a}{q}$ si, et seulement si, le grade de N est $\geqslant q+1$; donc si, et seulement si, $\operatorname{prof}(\mathfrak{p})\geqslant q+1$, pour tout $\mathfrak{p}\in\operatorname{Supp} \mathbb{N}$ (i. e. pour tout \mathfrak{p} du lieu singulier de R).

BIBLIOGRAPHIE

- [1] AUSLANDER (Maurice). Modules over unramified regular local rings, Illinois J. of Math., t. 5, 1961, p. 631-647.
- [2] AUSLANDER (Maurice) and BUCHSBAUM (David A.). Homological dimension in local rings, Trans. Amer. math. Soc., t. 85, 1957, p. 390-405.
- [3] BASS (Hyman). On the ubiquity of Gorenstein rings, Math. Z., t. 82, 1963, p. 8-28.
- [4] LICHTENBAUM (Stephen). On the vanishing of Tor in regular local rings, Illinois J. of Math., t. 10, 1966, p. 220-226.
- [5] LIPMAN (Joseph). Free derivations modules on algebraic varieties, Amer. J. of Math., 1965, t. 87, p. 874-898.
- [6] SAMUEL (Pierre). Anneaux gradués factoriels et modules réflexifs, Bull. Soc. math. France, t. 92, 1964, p. 237-249.
- [7] Séminaire Pierre Samuel. 1966/67: Anneaux de Gorenstein et torsion en algèbre commutative. Paris, Secrétariat mathématique, 1967.
- [8] SERRE (Jean-Pierre). Sur les modules projectifs, Séminaire Dubreil-Pisot : Algèbre et théorie des nombres, 14e année, 1960/61, n° 2, 16 p.