SÉMINAIRE DUBREIL. ALGÈBRE ET THÉORIE DES NOMBRES

MICHEL MENDÈS FRANCE

Un ensemble de nombres non normaux

Séminaire Dubreil. Algèbre et théorie des nombres, tome 18, n° 1 (1964-1965), exp. n° 2, p. 1-6

http://www.numdam.org/item?id=SD_1964-1965__18_1_A2_0

© Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1964-1965, tous droits réservés.

L'accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

16 novembre 1964

UN ENSEMBLE DE NOMBRES NON NORMAUX

par Michel MENDÈS FRANCE

1. Définitions.

Soit $x \in (0, 1)$ un nombre différent de $a/2^b$ (a, b entiers non négatifs). Il lui correspond alors un développement binaire unique

$$x = \sum_{n=1}^{\infty} \frac{\varepsilon_n(x)}{2^n}$$
 $\varepsilon_n(x) = 0$ ou 1.

Soit A_k un élément de $\{(0), (1)\}^k$ (k entier $\geqslant 1$). Soit p un entier positif $\geqslant k$. $N(x, p, A_k)$ désigne le nombre de fois qu'apparait la suite A_k dans la suite finie $\epsilon_1(x)$, $\epsilon_2(x)$, ..., $\epsilon_p(x)$. Le nombre x est dit normal (dans la base 2) si, pour tout k entier $\geqslant 1$ et pour toute suite $A_k \in \{(0), (1)\}^k$, on a

$$\lim_{p\to\infty}\frac{1}{p}N(x, p, A_k)=\frac{1}{2^k}.$$

En introduisant la suite de Rademacher $r_n(x)=1-2\epsilon_n(x)$, on obtient la caractérisation suivante [6]:

Le nombre x est normal si, et seulement si, pour toute suite finie d'entiers $0 \le k_1 < k_2 < \ldots < k_s$, on a

(1)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} r_{n+k_1}(x) r_{n+k_2}(x) \dots r_{n+k_s}(x) = 0.$$

2. L'ensemble E .

E désigne l'ensemble des nombres $x\in (0,1)$ qui ont la propriété suivante : il existe un polynôme réel ϕ tel que $r_n(x)=\exp i\pi[\phi(n)]$, $n\in \underline{\mathbb{N}}$, ([t] représente la partie entière du nombre réel t). Nous nous proposons d'établir le théorème suivant.

THÉORÈME 1. - L'ensemble E ne contient aucun nombre normal.

Il s'ensuit que E est de mesure nulle. On peut se demander si E contient "presque tous" (la signification de ceci est précisée ci-dessous) les nombres non

normaux. On répond à la question en termes de dimension de Hausdorff (dim_h):

THÉORÈME 2. - La dimension de Hausdorff de l'ensemble E est 0, alors que celle de l'ensemble V des nombres non normaux est 1.

La démonstration du théorème 2 nous permettra d'énoncer le corollaire suivant :

COROLLAIRE. - L'ensemble E est un ensemble d'unicité (au sens strict) pour les séries trigonométriques alors que l'ensemble V est ensemble de multiplicité.

Remarque. - Il se peut que l'ensemble V soit un ensemble d'unicité au sens large : le problème reste ouvert. Il a été abordé par PJATECKIJ-ŠAPIRO [9] d'une part, et par KAHANE et SALEM [5] d'autre part.

3. Esquisse de la démonstration du théorème 1.

On se sert de la caractérisation (1). Soit $x \in E$. Il existe donc un polynôme ϕ tel que

$$r_n(x) = \exp i\pi[\varphi(n)]$$
, $n = 1$, 2, ...

Soit v le degré de ϕ . On forme la quantité

$$L = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} r_n(x) (r_{n+1}(x))^{C_{\nu}^{1}} \dots (r_{n+\nu}(x))^{C_{\nu}^{\nu}}$$

$$=\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\exp i\pi(C_{\nu}^{\nu}[\phi(n+\nu)]-C_{\nu}^{\nu-1}[\phi(n+\nu-1)]+\ldots+(-1)^{\nu}[\phi(n)]).$$

On montre ensuite que L a une valeur voisine de

$$L' = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \exp i\pi \left[C_{\nu}^{\nu} \phi(n + \nu) - C_{\nu}^{\nu-1} \phi(n + \nu - 1) + \dots + (-1)^{\nu} \phi(n) \right].$$

Or $C_{\mathcal{V}}^{\mathcal{V}} \varphi(n+\nu) = C_{\mathcal{V}}^{\mathcal{V}-1} \varphi(n+\nu-1) + \ldots + (-1)^{\mathcal{V}} \varphi(n)$ est une quantité indépendante de n. On en conclut que |L'| = 1, puis que $L \neq 0$. La caractérisation (1) montre alors que x n'est pas normal (détail de la démonstration dans [7]).

4. Démonstration du théorème 2.

Il est connu que l'ensemble V des nombres non normaux est de dimension de Hausdorff égale à 1 ([2] ou [3]). Toutefois on donne ici une démonstration de ce résultat, plus rapide, mais moins générale, que celle qui se trouve dans les articles cités.

Soit k un entier $\geqslant 2$. Appelons C_k l'ensemble des $x \in (0,1)$ tels que $r_{nk}(x) = +1$, $n \in \underline{\mathbb{N}}$. C_k est un ensemble de Cantor à dissection constante [4], et dont la dimension de Hausdorff est $1-\frac{1}{k}$. D'autre part, on peut montrer que si x est normal, il en est de même du nombre y défini par $r_n(y) = r_{nk}(x)$, $n \in \underline{\mathbb{N}}$. On en conclut que $C_k \subset V$, donc que

$$\dim_{h}(V) \geqslant 1 - \frac{1}{k}.$$

Le raisonnement est vrai pour tout $k \geqslant 2$, donc

$$\dim_h(V) = 1$$
.

Pour établir que $\dim_h(E) = 0$, nous aurons besoin de quatre lemmes.

IEMME 1. - Soient A^0 , A^1 , ... une suite infinie dénombrable d'ensembles ayant pour dimension de Hausdorff 0. L'ensemble $\overset{\circ}{U}A^{\nu}$ a pour dimension de Hausdorff 0.

Nous admettons ce lemme facile à démontrer.

Soit E^{ν} l'ensemble des $x \in (0, 1)$ tels qu'il existe un polynôme réel de degré $\leq \nu$, vérifiant

$$r_n(x) = \exp i\pi[\varphi(n)]$$
, $n \in \mathbb{N}$.

Il est évident que

$$E \neq \bigcup_{v=0}^{\infty} E^{v}$$
.

D'après le lemme 1, le théorème 2 sera donc conséquence du lemme suivant.

IEMME 2. - La dimension de Hausdorff de E^{ν} est nulle pour chaque $\nu \in \mathbb{N}$. Soit $x \in E^{\nu}$. Il existe donc un polynôme ϕ tel que $r_n(x) = \exp i\pi[\phi(n)]$, n = 1, 2, Soit donc

$$\varphi(n) \equiv \alpha_0 + \alpha_1 n + \dots + \alpha_v n^v$$
.

Comme ϕ n'intervient que par $[\phi(n)]$ (mod 2), on peut sans perte de généralité supposer que le point $\alpha=(\alpha_0$, α_1 , ..., α_{ν}) appartient à l'espace (0, $2^{\nu+1}$. Soit $N_{\nu}(p)$ le nombre de régions de l'espace (0, $2^{\nu+1}$ qui ont la propriété suivante ; Quand α parcourt l'une quelconque de ces régions, la suite

$$[\phi(1)]$$
, $[\phi(2)]$, ..., $[\phi(p)]$

reste invariante.

Avant d'établir le lemme 2, nous devons encore démontrer deux lemmes.

$$\operatorname{mes}_{h}(E_{p}^{\nu}) \leq \frac{N_{\nu}(p)}{2^{ph}}$$
.

Démonstration. - En effet, quand ϕ parcourt l'ensemble des polynômes de degré $< \nu$, à coefficients dans (0, 2(, le point α décrit l'espace (0, 2($^{\nu+1}$. On voit ainsi que E^{ν}_{p} est composé au plus de $N_{\nu}(p)$ intervalles, la longueur de chacun d'eux étant $\frac{1}{2^{p}}$.

C. Q. F. D.

De l'égalité $E^{V}=\bigcap\limits_{p=1}^{\infty}E^{V}$, on déduit que la dimension de Hausdorff de E^{V} ne peut dépasser le nombre

$$\delta = \lim_{p \to \infty} \inf \frac{\mathbb{N}_{\mathcal{V}}(p)}{p \log 2}.$$

Le lemme 2 sera alors conséquence de l'égalité δ = 0 , laquelle découle du lemme suivant.

IEMME 4. - Quand p croit indéfiniment, on a

$$N_{p}(v) = O(p^{(v+1)^{2}})$$
.

$$q_n \leqslant \alpha_0 + \alpha_1 + \dots + \alpha_v + \alpha_v + 1$$
.

Il est clair que lorsque $\alpha=(\alpha_0^{},\alpha_1^{},\ldots,\alpha_\nu^{})$ parcourt $\rho_{n,q_n^{}}$, la quantité $[\phi(n)]=[\alpha_0^{}+\alpha_1^{}n+\ldots+\alpha_\nu^{}n^\nu^{}]$ ne change pas et reste égal à $q_n^{}$. Soit alors $q_1^{}$, $q_2^{}$, \ldots , $q_p^{}$ une suite d'entiers, chacun vérifiant la double inégalité

$$0 \le q_n < 2(1 + n + \dots + n^{\nu})$$
, $(n = 1, 2, \dots, p)$.

Quand a parcourt $\bigcap_{n=1}^{p} \rho_{n,q_n}$ (ensemble supposé non vide), la suite

$$\left[\phi\left(1\right)\right]$$
 , $\left[\phi\left(2\right)\right]$, ... , $\left[\phi\left(p\right)\right]$

reste invariante. Or le nombre $\mathbb{N}_{\nu}(p)$ de telles régions est majoré par le nombre maximum de régions que l'on peut obtenir en découpant l'espace euclidien $\mathbb{R}^{\nu+1}$ par

les hyperplans

$$\alpha_0 + \alpha_1 n + \dots + \alpha_v n^v = q_n$$

Leur nombre est lui-même majoré par

$$M = M_{\nu}(p) = \sum_{n=1}^{p} (2(1 + n + ... + n^{\nu}) + 1) = O(p^{\nu+1})$$
.

Il est par ailleurs connu [8] que l'espace $\mathbb{R}^{\nu+1}$ est partagé en $O(M^{\nu+1})$ régions par M hyperplans. Par suite,

$$N_{\nu}(p) = O((M_{\nu}(p))^{\nu+1}) = O(p^{(\nu+1)^2}$$
C. Q. F. D.

5. Conséquences.

De la démonstration des lemmes 3 et 4, il s'ensuit que l'ensemble E est ensemble d'unicité au sens strict pour les séries trigonométriques. En effet, la fermeture $\overline{E^{\mathcal{V}}}$ de l'ensemble $E^{\mathcal{V}}$ est invariante par la transformation $x \to \{2x\}$ (on a posé $\{t\} = t - [t]$). D'autre part, $\overline{E^{\mathcal{V}}}$ est un sous-ensemble propre de l'intervalle (0, 1) comme le montrent les lemmes 3 et 4. Par suite, $\overline{E^{\mathcal{V}}}$ est un ensemble H de Rajchman [4], donc ensemble d'unicité au sens strict. L'ensemble

$$\mathbb{E} \subset \bigcup_{\nu=1}^{\infty} \overline{\mathbb{E}^{\nu}}$$

est alors, lui aussi, ensemble d'unicité au sens strict.

D'un autre côté, il découle des résultats de PJATECKIJ_ŠAPIRO que l'ensemble V n'est pas un ensemble d'unicité au sens strict [9]. Cette remarque contribue à établir la différence qui existe entre les ensembles E et V.

Enfin, comme autre conséquence des lemmes 3 et 4, on peut remarquer que l'invariance de $\overline{\mathbb{E}^{\mathcal{V}}}$ par la transformation $x \to \{2x\}$ entraîne que, si $x \in \mathbb{E}^{\mathcal{V}}$, alors la suite $x.2^n$, n=1, 2, ..., n'est pas équirépartie (mod 1). On peut montrer que cela implique que x n'est pas normal : on retrouve ainsi le théorème 1 comme corollaire des lemmes 3 et 4.

BIBLIOGRAPHIE

[1] BASS (Jean). - Fonctions pseudo-aléatoires et fonction de Wiener, C. R. Acad. Sc. Paris, t. 247, 1958, p. 1163-1165.

- [2] BEYER (William A.). Hausdorff dimension of level sets of some Rademacher series, Pacific J. of Math., t. 12, 1962, p. 35-46.
- [3] ERDOS (P.) and TAYLOR (S. J.). On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences, Proc. London math. Soc., t. 7, 1957, p. 598-615.
- [4] KAHANE (J.-P.) et SALEM (R.). Ensembles parfaits et séries trigonométriques. Paris, Hermann, 1963 (Act. scient. et ind., 1301).
- [5] KAHANE (J.-P.) and SALEM (R.). Distribution modulo 1 and sets of uniqueness, Bull. Amer. math. Soc., t. 70, 1964, p. 259-261.
- [6] MENDÈS FRANCE (Michel). Nombres normaux et fonctions pseudo-aléatoires, Ann. Inst. Fourier, Grenoble, t. 13, 1963, p. 91-104.
- [7] MENDÈS FRANCE (Michel). A set of non-normal numbers, Pacific J. of Math. t. 15, 1965, p. 1165-1170.
- [8] MOTZKIN (Theodore S.). The probability of solvability of linear inequalities, Proceedings of the Second Symposium in linear programming [1955. Washington], Vol. 2, p. 607-611. Washington, National Bureau of Standards, 1955.
- [9] PJATECKIJ-ŠAPIRO (I. I.). Sur le problème de l'unicité du développement d'une fonction en série trigonométrique (Supplément)[en russe], Moskovskij Gosudarstvennyj Universitet im M. V. Lomonosova, Ücenye Zapiski, 165, Matematika 7, 1954, p. 79-97.