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LATTICE-ORDERED DEMIGROUPS

by Garrett BIRKHOEFF

The following discussion is essentially a preliminary draft of the third edition
of my book, "Lattice theory", which should appear in print around 1965+ Repeated
references will be made to ¢

[DIC] DUBREIL-JACOTIN (Me=Ls), IESIEUR (L.) and CROISOT (Re)s = Legons sur la

théorie des treillis, des structures algébriques ordonnées et des treil-

lis géom?triques. - Paris, Gauthier-Villars, 1953 (Cahiers scientifi-
ques, 21).

[LT2] BIRKHOFF (Garrett). — lattice theory, revised editions = New York, American
mathematical Society, 1948 (Amers mathe Soce Colls Puble, 25).

References such as to ¢ "Che V, § 3", refer to the mimcographed "Notes on lattice
theory" made by my students in 1960/61.

le Multiplicative posets.

Lattice-ordered demigroups and their generalizations play a central role in such
diversc subjechs as algebraic number theory, algebraic geometry, the Wedderburn
theory of scmisimple slgebras, the algebra of binary relations, Brouwerian Logic,
and general topologys The theory of lattice—ordered semi-groups attempts to give
a synthesis of certain aspects of these subjects, by suitably gencralizing the
concept of lattice-ordered group.

The logical starting point for the theory of»lattice-orderéd demigroups consists
in the following definitione

DEFINITIONs = A multiplicative poset or m~poset (l) is a poset M with a
binary multiplication which satisfies the isotonicity condition
(1) agb implies xa g xb and ax Lbx ’

for all & , b, xe& M, When mltiplication is commtative or associative, I
is called a commutative or associative meposet, respectivelye An m-demigroup is
an associative m~posete

, (l) "Groupo'ide ordonné" in the terminology of [DIC].
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EXAMPIE l. - Any po-group is an m~poset which is a group under multiplication.

Conversely, any m-posct which is o group under multiplicetion is a po=-groupe

EXAMPIE 2+ = Let B Dbc any binary system, that is, any set with a binary

miltiplication (or "groupofde"). Then the subsets of B form an m-posct M(B) ,
if ST is the sct of all products st with se S, te T

Clcorly, 1(B) is a Boolcan algebra j and if B is comrmtetive or associative,
then so is M(B)

There arc nany important concepts which are appliccble to m-posets generally.

Among these cre the followinge

DEFINITION, = A zero of an m-poset M is an clement 0 of M such that
(2 0Lx and x0=0x=0 for 2all x €M .
A unity of M 1is an element .1 such that

) lx =xl =x for all xe M .

An element a of an m-poset M with unity is integral if and only if ag 1
If all elements of M are integral clements, then M is called an intogral
m=posete ‘

An m-poset cen have at most one unitye For if 1 and 1 scotisfy (3), then
1 = 11% = 1t . Likewise, a poset can have at most one zeroe Any po=-group has a

unity, the group identity. If & po-group has a 0 , it can have no other element.

EXAMPIE 34 = Any distributive lattice L 1is a commutative and associative
m-poset if ab is defined as anb e« If L hasan I, then I is a unity

for this m~poset, which is an integral m~posets

DEFINITIONe = In an meposet M , an elerent a is called subidempotent if
an < a 3 it is called a left-ideal element if X2 < a for all x€ M, and a
right-ideal element if axg< o for all x e M . An element which is both a left

and a right=ideal element is celled an idcal elemente.

In cxample 2, the subidempotent clements of M(B) correspond to thc subalgebras
of B . In example 3, and in integral. m-posets generally, every clement is an
ideal elercnte Clearly any left or right-ideal element is subidcmpotente The
concept of an ideal element is suggested by the following extension of example 2e
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EXAMPIE 4. - Let R be any ring, and let M(R) be defined ns in example 2, from
the rmltiplication in R o Then M(R) is an m~poscts The modulcs (nonvoid additive
subgroups) of R form a subset N&(R) of M(R) which is closcd under interscctione
If ST is defined as the set of 21l finite sums z:si ty s 85 € S and t, €T,
then MlGR) is also an n-posct, which is a modulsr lattice as a poset though

not a Boolecan algebra unless the additive group of R is cyclic of prime ordere

In cxample 4, the O of R is a zcro of I%.Gﬁ « Morcover the subidempotent
clerments of Mi(R) correspond to the subrings of R 3 and thc right, left, and
two-sided idecl elerents of M (R) to the corresponding ideals in R . If R has
o unity, then R dtself is o unity for the lattice N%(R) of 211 two-sided ideals
of R . Hence MzﬂR) is an integral m~poset.

EXAMPIE 4's - Let D be any demigroup, and form M(D) as in example 2. Then the
subidempotent elerents of M(D) correspond to the subdemigroups of D ; and the
right, left, and two-sided ideal elerments of M(D) to the corresponding scts of
idecls in D o If D has = unity, then the two-sided ideals of D forn an integral

m~posct, as beforee

2e¢ Lattice—ordercd demigroupss

Onc of the most important questions in the theory of ordered denmigroups is the
followings Cen onc devclop o unified theory of ideal elements in m-posets which
will yicld the theory of iderls in rings ~nd demigroups as specicl cases ? Such

o unified thcory should also, of course, have other intercsting applicationse

To lay the foundations for such a unificd thcory, we first definc sore further
propertics of rm=poscts of ideals.

DEFINITIONs = A rmltiplicative serilattice, or mnesemilottice (2) is e binary
systen M which is a senilattice under U , and satisfies
(4) a(lbuc) =abuac and (aub) c =acu be y

for all a , b, ce M. If M 1is a lattice under u , then it is called a
rultiplicative lattice or mn~latticce If the rultiplicotion in M is associative

and with a 1 , then M is called an £~derdgroupe

(2) Called a "gerbier" in [DLC], whcre an m~lattice is called a "groupoide ré-
ticuld".,
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Onc shows trivianlly that any nesenilatticc is an  m=posct. One verif ics eesily
thet the subsets of ony binery systen B (cxarple 2) forn a complemented,
distributive m-lottice M(B) o Also, any distributive lattice (exemple 3) is an
m=lattice if xy = xn y » Again, the modulcs of any ring forn o conplcrented,
modular m-lattice (example 4)e Finally, eny po-group which is a lattice satisfies
(4) ond its dual "

(41) albnec) =abnac and (an b) ¢ =acnhbe .
EXAMPIE 5. - The join-endomorphisms o , B , y , s+ of any semilattice S

form an m-semilattice, under the definitions

(5) a@p) = (aa) p and afx u p) = axu ap .

Observe that the class of m-lattices is equationally definable in the sense of

chapter V. Hence the general algebreic concepts of subalgebra, homomorphic image,
and direct union apply to m-lattices. In particular, any m-sublattice, homomorphic
image, or direct union of m-lattices is itself an m-lattice. A similar remark
applies to l-semilattices and to {-demigroups, but not to {-semigroups since

the cancellation law is not preserved under all homomorphismse.

The preceding remark permits one to construct various interesting m—-semilattices

of real functions, under addition snd 1. u. b. The upper-semicontinuous functions

and subharmonic functions of n variables form commutative Z£-semigroups.

THEOREM 1. - In any m-lattice M,
(6)  (anb(aub)<banab forall a,b .

If M is an integral m-lattice, then

(7 aub=1 implies anb=Dbau ab ,
and
® aub=auc=1 implies aube=au (bne) =1 .

If M has an element z <1 satisfying zx = xz =2 for all x e M, then this

z 1s a zero.
This is theorem 1 of [LT2] (p. 201), where a proof will be found. It applies to

ideals in associative rings, in view of the following result.

THEOREM 2+ =~ Let L be any £-demigroup. Then the right-ideal elements of L ,
the left~ideal elements of L , and the (two-sided)-ideal elements of L are



19-05

m-sublattices.
PROOFe ~ The case of right-ideal elements is typicale If a and b are right-
ideal elements, then by (1)

(anb) x Cax<a and (anb) x<bx<b

for all x € L j hence
(anb) xLanb.
Also, by (4),
(aub) x=axubxgaub .
Finally, by associativity,

(ab) x = a(bx) < ab .

3e Divisibility in semigroupse

The most deeply studied m~posets are the commtative and associative semigroups
associated with multiplication in certain classical integral domains. The fundamemtal
ideas involved can be stated very simply (3 ) ; but the m~posets in question are
not generally lattices.

Let G be any commtative semigroup with unity 1 . Define a|b to mean that

ax = b for some x € G ; this relation is a quasi~ordering of G . Now define

an b (read " a and b are associated”) to mean that alb and bla; anmb if
and only if b = au , where u is a "unit", or divisor of 1 « The relation

is an equivalence relation, whose equivalence classes form a partly ordered set

P(G) (as in Ch. II, § 2). Morcover anmn b is a congruence relation for multiplications
For if ax=Db , then (ac) x = (ax) ¢ = be for a1l ce€ G j hence alb implies

ac|be . Likewise, bla implies be | ac , and so an b implies acnN be for all
ce G, as asserted. Finally, l]a for all a € G . This proves that P(G) is an
integral m~poset ; it is evidently a commtative po~demigroup as wells One can
prove more.

THEOREM 3. - In any commutative semigroup G with unity, the relation alb
defines an integral po-semigroup P(G) on the sets of associated elementse For
each a e P(G) , the mapping x - ax is an order-isomorphism of P(G) onto the

(3) See : BIRKHOFF (Ge) and MACIANE (S.)s = Survey of modern algebra, reve cde =
New York, MacMillan Company, 1954 3 Ch. III, § 7.

See also : DUBREIL (P.) et DUBREIL~JACOTIN (Me=Le) o = Legons dtalgdbre modernce =
Paris, Dunod, 1961 (Collection universitaire de Mathématiques, 6) 3 Che IV, § 6.



19-06

lattice ideal A of elements c< a .«

To prove that the po-demigroup P(G) is a po-semigroup is to show that
ax N ay implies X Ny » But ax|ay implics ay = ya = Xaz = axz for some
z € G, whence y = xz Dby the cancelletion law in G j; therefore ax‘ay implies
xly o Likewise, ay|ax implies vlx , from which the cancellation law in P (G)

followss To summarize the preceding results, we make the

DEFINITION. - A commutative integral po-semigroup in which a > b if and only
if alb is called a divisibility po-semigroup. If it is a lattice under alb ,

it is called a divisibility £-semigroup.

The po-semigroup P(G) in theorem 1 is a divisibility po-semigroup ; considered
as a semigroup alone, P(P(G)) ZP(G) .
Now let G be the multiplicative semigroup of the nonzero elements of an

integral domain D » Then an b is equivalent to the statement that a and b

generste the same nonzero principal ideal (a) = (b) of D « We have the
COROLIARY, = The nonzero principal ideals of any integral domain D form a
divisibility semizroup S(D) .

Referring back to theorem 1, we sce that if S(D) is a lattice (is e., if any
two elements, a , be D have a ge co de and le coe me in D ), then the
correspondence X - ax preserves joins and meets (which are nccesserily in A

for any ax and ay ). This proves

THEOREM 4+ = If 2 divisibility po-semigroup is a lattice under the rclation
alb , then for 11 a , b, ¢ 3

Q) a(buc) =abuac and al(bne) = ab n ac .

4+ Prime factorizations.

In classicel algebra, attention is focussed on two pariiculer families of integrel
domains, and specifically on proving that the elements of these domains admit of

unique factorization into primes. The integral domains E in question are the

followinge

EXAMPLE 6+ = Let F = R(®) be an algebraic extension of the rational field R
of finite degrece, and let E be the domain of all algebreic integers of F o
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EXAIPIE 7o = Let F = K(x 5 oe0 xr) be the ficld of all rational forms in
r veriables x with coefficients in o given base field K , end let
E =K[x 4 eeo , x.] De the domin (subring) of 211 polynomial forms in the

X, o600 o
L

We now define generally threce closely related concepts, which are effectively

equivalent when unique factorization into primes is possibles

DEFINITIONs = Lot M be any integral meposet. An clement me M is called
meximal if it is covered by 1 ; an clement p < ! such that ab& p implies
alp or bg p 1iscalled prime 5 an element p < 1 such thet ab =p implies

a=p or b=p is called indecomposable.

COROLIARY. - In a divisibility po-semigroup, p is a prime if and only if
plab implies pla or plb .

IEMAA le - In a divisibility po-semicroup, any prime element is maximal § an

clement is maximal if and only if it is indecomposables

PROOF. = Let m be maximal in any integral m-poset, ond that xy = m « Then

x=m or x=1 since m=xyLxl =x and m is meximl j likewise, y =m
or y=1,Since x=y =1 would imply xy =1 , either x=m or y=m, and
so m is indecomposable.

‘Conversely, unless p is maximal, 1> q>p for some q « Since g > p imdlies
alp , p =aqr where (evidently) r< 1 . Moreover r& p since (by theorem 1)
g <l and r<p would together imply qr < p . Hence p cannot be prime unless

it is maximal. Sincc r £ p and ¢ £ P , it cannot be indccomposable eithers

The classicol divisibility semigroups defined by the nonzero elements of examples
6 and 7 satisfy the ascending chain conditione This follows from the corollary of
theorem 1, since (i) the ideals of the corresponding integrol domeins satisfy the
ascending chain condition (Che VII), and (ii) hence so cdoes the subset of principal

ideals a fortiorie

IEMA 2+ = In eny integral po-semigroup satisfying the ascending chain condition,
cvery clement c £ 1 is a product of indecomposable (= maximal) factorse

PROOFs = If the conclusion feils, then the nonvoid set of all elements not so

decomposable rmst contain a maximal member ¢ o This ¢ cannot be indecomposable
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(ie cs, covered by 1), or the conclusion would hold triviallye. But if ¢ is
decomposablc, then ¢ = ab where a>c¢ and b>c « Since ¢ was maximol
among elements not products of indecomposcblc factors, we have o = Py eev P,

and b = Qg eer Gy s whence ¢ = Dy see P, =Gy eo0 Ay s giving a contradiction.

The following example shows that one cannot prove more, without meking a further

assumption.

EXAMPIE 7. — Let G be the additive semigroup of pairs (m , n) of nonpositive
integers whose sum m + n is cvens Then (-2 ,0) + (0, -2)< (-1 ,=1) , and
so (=1, ~1) is maximal but not prime. Also, since
(-2 ,=2)=(-2,0 +©,=2 =(=1,=1) + (=1, =1) , one need not

have a unique factorization theorem.

Actually, the relevant assumption is precisely the lattice hypothesis of § 2,

as we now shows

IEMA 3. - In any integral m-lattice L , every maxirnl clement is prire and

indeconposable.

PROOFe = Let m be maxinale. Unless x&nm, xun=1.Hence if xyL<n, but
x£&m, then

y=ly=(xum ySxyumy=numnl =n ’

so that m 1is a prime. To prove indecomposability, one proceeds as in lemma le

COROLLARYs = In a divisibility f-semigroup, the concepts of prire elerent,

indecomposcble clement, ~nd moxinal element ~re mutually equivelente

THEOREM 5. = In any divisibility {-scmigroup which sctisfies the acscending chain

condition, every elerent c¢ £ 1 can be uniquely factored into prime factorse

PROOFe - By the preceding corollary, the words prime, indecomposable, and maximal
are mutually interchangeable. By lemma 2, at least one factorization into prire
factors existse If ¢ = Py e*¢ P, =Qj eee g arc any two such factorizations,
then by the first corollary of § 3 and induction, plqj for some j e Hence, p
and q being maximal, P, = qj « Cancelling, one can prove uniquencss by induction
on r j; we omit the details.
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APPLICATION. - Theoren 5 has an immediate application to algebraic nurber theorye
It is known (5) thet factorizatiom into primes is unique in a domain E =E(6) of
algebraic integers if and only if every ideal of E is principsls But the set of
all ideals of any ring is a lattice ; hence, if the unique factorization theoren
holds in E(8) , its principal idcels form on l~-semigroup ; hence the sare is
truc of its divisibility po-semiyroup, os in the corollary of theorem 3. By
theorem 5, and the remerks preceding it, the converse is also truce In conclusion,

we have the following result (6).

COROLIARY. - The nonzero integers of an algebraic number field F = R({@) satisfy
the unique frctorization theorem if and only if their divisibility po-semigroup

is o latticee

It is actually sufficient that the divisibility po-semigroup be a senilattice .
under ge ce de For a reasonably practicel necessary and sufficient test for this,
sce POLLARD, theorem 9.5,

6s Integral m-lattices.

An integral meposet which is a lettice with respect to its order relation is

called an integral m~lattice. The two-sided ideals of any ring with unity form

such a (modular) integral m-latticc. Indeed, the main advantage of considering
idecls instcad of elements, in algebraic number theory, is to ensurc the existence
of ge ce de and 1. c. me, thot is, thet onc has a (commtative, modular, integral)
m-lattices In general rings, one sscrifices the cancellation law to gain this

adventages

In any integral m-lattice, one defines two elements a sand b 1o be coprime
when a U b =1 (this is the dual of disjointness, for positive elements in an
L=group) « Such coprire elements have a number of interesting general properties,
proved in [LT2], (Che XIII, § 3)e From this source we quote only onc isolated
resulte

THEOREM 6. = Every complemented integral m-lattice is e Boolean algebra, in
which Xy =xny.

(5) POLLARD (Harry). = The theory of algebraic nurberss - New York, J. Wiley and
Sons, 1950 (The Carus matheratical Monographs, 9) ; theorem 9e4. This book will be
referred to below simply as POLLARD.

6 . ,
(") JAFFARD (Paul). -~ les systémes d'idéaux. - Paris, Dunod, 1960 (Travaux et
Recherches mathématiques, 4) 3 p. 81, théoréme 4).
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7« Residuation.

One of the most important concepts in the theory of multiplicative lattices is

that of residual, defined as follows.

DEFINITION. - Let I be any m-poset. The right-residual a «* b of a by b
is the largest x (if it exists) such that bx L a ; the left~residual a *« b
of a by b is the largest y such that yb <a « & residustedlattice is an

m-lattice L in which a . b and a ¢« b exist for any a, bel;a

residuated {I~demigroup is an associative residuated lattices

Any po-group is residuated ; moreover X .* y = y-l x 1is the operation written
®/y in Che V, § 10, and x *. y = Xy"l is the operation written x\y there.
Since residuals in f-groups are definable in terms of group multiplication alone,
their discussion belongs properly to pure group theory, and will not be given

here.

THEOREM 7. = In any residuated lattice, we have

(10) (@nb) e+ c=(ae*c) n(be*c) and symuetrically,
(11) as (buec)=(asb)n (aec) and symmetrically,
(12) abge, bLce*a,and agc s b are equivalent,

(13) (ab) o azb and (ab) *e b>a .

In any residuated {-demigroup

(14) (@ e*b) *+c=(a*ec) «* b is the largest x such that bxc =a,
and
(15) a e (bc) = (2 e*b) e*c and a *s (bc) = (a *e c) e b .

Proofs of these results are given in [DIC]s In equations (10) and (11), the
existence of the left side implies that of the right side.

Almost trivially, we have the following resulte
IEMMA l. = In any m-poset, the functions a «* b and a *s b are isotone in
a and antitone in b .

This result implies a «* (bnc)2 a «* b and a «*(bnc) > a «* c o By the
definition of y as least upper bound, there follows the inequality (16) of
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IEMA 2. = In any residuated lattice, we have
(16) as (bnec)> (@« b) uae c) and symmetrically ’
(17) bl ase (@*eb) and bgae (ae° D) .

Thé first inequality follows from the definition of & o+ (a *e« D) , since

(a *« b) b< a by definition of a *« b e
~N

COROLLARY. - Any integral element a of a residuated lattice with unity

satigfies

(18) el (L*ea)$l and aglee (Lo a)g !l .

PROOF. = Since a g 1,

1* a>1°1=1 H
hence by lemma 1,
Lee (Leea)glorl=l .
On the other hand, since
(L*ea)agl, L. (°*a>a ’

completing the proof of the first inequality. The second follows by symmetrye

8¢ Resgsiduation and Galois connectionss

The two binary operations of left-and right-residustion define a class of Galoils

connections with many diverse applications (7). We have

THEOREM 8, - For any fixed element ¢ of any residuated lattice L , the

*

correspendences % = C ¢* X =X and y *C e y = yT define a Galois connection

on L.
PROOF, = By definition (Che VII, § 7), this means that the correspondencés in
question are antitone, and that
x<c et (c*ex) and xLec e (co° x for all x .
These results were proved in the last sectione

For applications, the choices ¢ =0 and ¢ =1 are the most interestinge.

66 Sec : DUBREIL (P.) et CROISOT (Re)e = Propriétés générales de la résiduation
en liaison avec les correspondances de Galois, Collectanea Mathematica, t. 7, 1954,
pe 193-203 (Seminario matematico de Barcelona).
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Moreover for applications, one wants to pursue the implications of theorem 8

somewhat furthere.

IEMMA le¢ - Under any Gelois connection, we have

(19) (EH* =% ama (D)= .

* .
The correspondences X > )T and x » (x)7  are closure operations. The closed
* S
clements x = (¥)T form a lattice, and so do the x = (x!) o Joins and meets

are defined in this lattice by

(20) xAay=xny end xVvy=((xv yQT)* resp.  ((x uyp™T .

We omit the proof, which belongs in Che VIII, & 7. The above results have an

obvious corollaryse

DEFINITIONs = For any ¢ € L , L a residuated lattice, an element x e L is
right c~closed if and only if x =c «* (c *s %) , and left c-closed if and

only if x =c e (Cc o* X)

COROLLARY le = An element x € L is right oc-closed if and only if x=c *e ¥y

for some y , and left c~cloged if and only if X =c «* y for some y .

The fact that the meet of any two right c-closed elements is right c-closed
follows since (a u-bf* = 2*n b* . On the other hand, the join of two right

c~closed elements need not be right c-closed.

Note also the condition of P. DUBREIL (8) : The c-closures of x are defined

by the equations E; = cx «* ¢ and .EE,= cx *s ¢ , respectivelys

The preceding definitions can be gpplied to the f-demigroup L of all modules
A,B,C, ees oOf an associative ring R (example 4 of § 1)« In this example,
the Galois connection defined by X =+ C o* X and Y-+ C °¢ Y can also be derived
concretely from the polerity (Che VIII, § 6) defined by the binsry relation
xy€ C o If C is a right-idecl, then so is C ¢ X 3 if C is a left-ideal, then

so is C *¢ Y ., Hence we have @

(8) DUBREIL (Paul)e = Contribution & la théorie des demi-groupes, III., Bull.
Soce mathe France, te. 8L, 1953, p. 289-306 ; LESIEUR (Léonce) « = Sur les demi~
groupes réticulés satisfaisant & une condition de chafne, Bull. Soce mathe France,
te 83, 1955, p. 161193,
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COROLLARY 2. = If C is a (two-sided)-ideal of an associative ring R , then
the right O=closed modules are right-ideals of R , and the left C-closed modules

are left~idealse

The concept of c-closure cen also be applied to the lattice of bounded sub-
hermonic functions on a region R « The O-closed functions O 3 x are just the

harmonic functions on R

9+ Brouwerian lattices.

The preceding results can be applied to lattices which are m~lattices with
respect to the multiplication xy = xn y , so~called Brouwerian latticess

Brouwerian lattices are neccessarily distributive as lattices and commtative as

m-latticese (See also theorem 6).

In dealing with these, and with the other commuitative residuated lattices to be
discussed in § 9 = § 14, we will write a t b for a «* b =a * b We also have
al = a* for all a . Hence we can suppress the notation al « We first extend the

result of example 3, by proving

THEOREM 9, = A lattice L 1is a residuated lattice, when xy is defined as
XNy, if and only if it is e Brouwerian lattices In this case, L 1s an
integral commutative £-semigroup.

The proof is almost trivizl, since if xy = x ny , the definition of relative
pseudo-complement a * b given in Che I, § 13, coincides when b g a with that
of b : a given in § 7 above, and thet of pseudo-complement a¥ coincides with

thet of O ¢ a given in § 7. For the details, see Che X, ps 1Ce

THEOREM 10 (GLIVENKO)s = If L is & Brouwerian lattice, then the correspondence

asa ™ is a closure operation on L , and & lattice-homomorphism of L onto
the Boolean algebra of "closed" elements. Moreover o =™ if and only if
and=bnd for some "dense" d € L satisfying R N

PROOFs = We first establish, for relative pseudo-complement, that

(21) csa)nfcs: (c:a))e .

To prove (21), write ¢ $ a as a* and ¢ ¢t (c 3 a) as a** s 25 in § 7. If
* Kk * K% * . , *

b=a"na’ ,then b =a we >b since the correspondence x »x is a

dual automorphism of the lattice of c—closed elementse. But this implies
b=bnb=D>bbgec , proving (21).
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xna abt. Cleerly y< X,

kk
whence y n an bgc ,which implies ynale b= B e But ynagy<b by
definition of y 3 hence yn s <b'n b ¢ by (21). This implies
Kk

y<&ec s a= ar s hut vy& a** by its definition j; hence y< at nea &Ec,by

Now suppose xnanb<&c in L j define y

s * *k
(1) s In summary, Xnanbgc implies xna‘nb L c,yor
(anb)*< @ n b )* . But the reverse inequality is obvious ; hence

(enb)* = @ np™H*,

On the other hand, (a* ub)® = 2 q M , and so

(an b)* = (a$* n tﬁ*)* = ((d* U b*)*)* =a v b s

* and b* in the lattice of 2ll c~closed

elements of L « For proofs of the other statements of theorem 10 (see [IT2], pe

£

where a*'v b is the join of

10. Complete m=latticess

The majority of residusted lattices are complete, end they satisfy the infinite

distributive laws

(22) a(U bﬁ) = U (abp) and U a) b=U (2, p) .

This leads us to meke the following definitionse

DEFINITION. =~ A complete m~lattice, or cm~lattice, is = complete lettice with
2 binery multiplication satisfying (R2). A complete m=lattice which is an {=
demigroup is called a cf=demigroup ; if the cancellation law holds, it is called
a cl-gemigroup.

Anslogs of (15), (16) and (R1) hold in any cm-lattice which is residuated (see
theorem 10) o

The modules of a ring (example 4, § 1) constitule 2 typical cm-lattice ; we omit
the verifigation of (22), which follows from the fact that the operations involved

are finitery (binery)e. We now show abstractly that cm~lattices are almost always
residuated.

THEOREM lle = In any cmelattice, a «* b exists if bx < a for some x , and
a*e b exists if ybg a for some y .

PROOFe = Let u be the join of all Xy such that bxa\< a « Then
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bu = bU Xﬁ) =Ubx, £ a

by (22) 3 hence
u=a+*b .

The existence of v =b ®s a wunder the stated assumptions can be proved similar-
1yo

COROLLARY 1. = Any cm~lattice with zero is residuated. Using theorem 2, we
obtein

COROLLARY 2+ =~ If R is any associative ring, then the complete melettices of
all modules of R and of all twomsided idecls of R are residustede

In fact, if H and X are subrings of R , then H «* K and H *, X are the
right= and left-quotients of H by K , in the sense of ideal theory. The case
H=0 is of especisl importance 3 O «* K is called the right~snnihilator of
K,and O *s K the left-annihilator of K o We will discuss these ideas further
in § 14.

Regular open sctse = We will now derive the general properties of regular open

sets in Hausdorff spaces, as an epplication of the theory of residuated latticese

Conversely, the discussion gives some intuitive meaning to theorem 10.

EXLMPIE Q¢ = Let L Dbe the complete Brouwerian lattice of 2ll open sets of any
Hausdorff space I , and let ¢ =0 in the Galois correspondence of § Qe This
mkes a¥=01a.,

Then o* = I* means that o differs from I on a nowhere dense set §; some of
the properties of nowhere dense sets will be established belowe Also, sets such
that & = a are colled regular open setss In the Hausdorff spece defined by the
open interval (0 , 2) , the open intervals (0 , 1) and (1 , 2) are regular
open sets, but their union is not regular. This illustrates the fact that, even
Cif a=a% and b =1 are closed in thecrem 10, the union au b = a v p**

can be smaller then a Vv b = (a y b)** .
IEMA 1o = If o =T wnd b =1, then (anb)™ =1.

PROOFe - In any integral residuated lattice, O 3 1 =0 3 hence the hypothesis
of lemma 1 is equivalent to a nx=0 implies x =0 and bpnx=0 implies
x=0 (e cey, a8 =T =0 and b = I*=0). But the above conditions yield
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in turn that (anb) n x =0 dmplies an (bnx) =0, hence bnx=0, and

hence x =0 . This is (anb)" =0 .

IEMMA 2, = Every a € L satisfies a = 2 n k o where k¥* = 0 o Conversely,

if ¥* =0, then a = (an K* .

PROOF. - Set k=aua e« Then k' = (aua’) =a na =0, by definition
of a™* = (2"* . Also

R

a nk=a$*n(aua*)=(a**na)v(a**na) u0=a,

i
[6]

since & 2 & o Finally, if K =0 , then k nx =0 dmplies x =0 Hence
*

(ank)nx=0 (or kn(anzx =0) dmplies anx=0, and so (ank)*sa o
%

But (an k¥ > a® trivially ; hence a* = (ank) , completing the proofe

COROLIARY. = In L, a' =b* if end only if a=cnh =nd b=cnk for
some c , where n*=x*=0.
PROCF. ~ If a* =b* , then &' =b =c.Byleme2, a=cnh and

b =c nk , vhere n* = ¥ = 0 . The converse follows from lemma 2 similarlye
We have shown that two open sets have the same "regular" completion if and

only if they differ by a nowhere dense set. Finally, we state without proof $

THEOREM 12, - A Brouwerian lattice L is isomorphic with the lattice of all
open sets of a Hausdorff space if and only if it is complete, and every element
of L is a meet of maximal elements ("dual pointg").

The second condition is a transfinite analog of factorization into primese

1le Fundamental theorem of ideal theory.

Residuals (or "ideal quotients" j see the remark after theorem 11, corollary 2)
pley an important role in modern proofs of the fundamental theorem of ideal
theorye This theorem is concerned specifically with E-modules of an arbitrary
algebraic number field R(0) , where E is the domein (subring) of all integers
of F o One can easily generalize theorem 2, to show that the set of all such

E-modules is a commitative {-demigroup, and an mesublattice of the {-demigroup
of 211 modules of F o

Such an E~module A is a Dedekind ideal of F if and only if
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() A 1is nonzero ,
and
(i1) nh cE for some rational integer n .

(Using the concept of integral besis, it is easy to show that an E-module A 1is
a Dedekind ideal if and only if E u A/E n A is finite j the trick is to show

that every integral ideal contains a rational integer Il f(ei) o)

One of the main conclusions of algebraic number theory is the result that
Dedekind ideals of F form an (atomistic) L~groupe The unique factorization
theorem for integral ideals follows as a corollery of this group property, as in
Che - XI. However, this group property is not easily established.

Actually, the fundamental theorem of ideal theory can be best proved using two

special properties of the commutative residuated f£-demigroup with unity of all

nonzero E-modules of F , viz ¢

I. If A is o nonzero integral E-module, then all chains between A and E

have finite length (Finite Chain Condition)e
II. If P is a maximal proper integral E-module of F , then P(L s P) =1,
THEOREM 13. = Let L %he any commtative residuated f-demigroup with unity, in
which @
(I) 0< a<1l implies that ell cheins between a and 1 are finite, and

(II) p(l 2 p) =1 for every maximal proper integral element p « Then every
element a €l with 0 < a<1l has a unique factorization into meximal 1 <1l.

We approach the proof through a series of three lemmase
IEMMA le = If L >p and p(l :p) =1, then

PROOF. = Since p <1, P& for 2 =1 42,3, eee s If pFH =g
then

1
p:pr+(1:p)r=pr(l:p)r=l ’

giving o contradiction. The proof that 1 < (L ¢ p) < (L p)2 < eee 1is similare
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IEMA 2 = If 1>p>a >0, then L> (L :p a>a.

PROOF, - Since p>a , L= (1 3p) p2({L :p aeloreover L=(L20p)a
would imply p =pl =p(l ¢ p) a = la = a , contrary to hypothesis. Likewise,
since (L :p) >1, (L :p) a>la=2a. Mreover (Lt p) a=a would imply

a=1la=p( : p a=pa, and hence

2 2 3
a =pa =p(pa) =p a:p(pa):p 8 = ses .

Since 1> a , this would imply a = pr a g pr 1= pr for all r » Hence, by
(23)s we would have an infinite chain of elements {pr} between 1 and a , again

contrary to hypothesis.

COROLLARY, = Under the hypotheses of theorem 15, every prime nonzcro integral
element is maximal.

PROOF. = Let a be any non-zero non-maximal integral elements Then a< p<1
for some maximal p<1l . Hence g = (1L ¢t p) a>a by lemma 2, so that p> a .

But pqg = p(l ¢ p) a=a since p(l : p) =1 ; hence a is nonprime.

IEMMA 3¢ = If O<a<l, then a is a product of elements Py covered by
1 (primes).

PROOFe ~ By the finite chain condition, either the conclusion holds or there is
a maximal element a for which it failse This maximal element cannot be covered
by 1 , because the conclusion holds trivially for elements covered by 1 « Hence,
by the corollary of lemma 2, a =pr where 1> p>a and 1> r > a . By inductim,
P =D eee P, and g = q; ees g where the 19 and qj are covered by 1 .

Hence a = Py »e* P Q) eos g s which we wanted to prove.

To prove theorem 13, it only remains to prove that the factorization is unique
(up to rearrangement of factors). This can be proved by the usual argurent. If
& =p; ceo P, and a=q; eoo S where the 1 and q; are covered by 1,
then p,2a= Q; eee Qg e Hence, by the corollary of lemma 2 and induction,

Py 2 9;

5 for some j . Since p; and a3 are both maximal, p; = qj « Hence

Py *++ P, = (1 :p) Py Py eee P, = (: pl) a=(17: qj) a,

- ql q2 oc e Qj_l(l =qj)qj 20 qT = q]_ se e qj_l qj+l cee qS ’

whence uniqueness follows by induction on 1
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12. Discussion j Artin equivalences

Unlike theorem 3, which is much more elegent in appearance, theorem 13 is really
useful for algebraic number theorys. This is because one can prove that assumptions
I and II hold in about five pages (9)0

Actually, one can prove much more than assumption I very directly. Since the
lattice of E-modules is modular, all connected chains between o and 1 have the
same length,

That is, one needs only about five pages of techmical. reasoning about algebraic
numbers per se to establish the fundamental theorem of ideal theory, if one is
willing to assume the elements of the theory of £ -demigroups. Possibly one can
do better, though I doubt if one can replace assumption I by the ascending chain

conditione

The identity p(l : p) =1 for maximal elements was the key assumption made in
proving theorem 13. Had we asstzed the identity =x(L ¢ x) =1 for all x , then
we would have assumed in effect that L was an £-group with =11 x.For
such f-groups, we know by [LT2] (Che XIV, § 13), that the ascending chain condition

on integral elements does imply unique factorization.

Artin equivalencee. - The identity x(l : x) =1 I8 related to an interesting

congruence relation introduced by ARTIN into commutative residuated £-demigroups
With un.ity 1.

Two elements a , b of such an 2-demigroup L are Artin equivalent when
kK ok
=b

1 ta=1:b. By theorem 8, this is equivalent to saying that a s Where
‘we define x =1 : x 3 thus 1% is analogous to the equivslence relation studied
in the theorem of Glivenko. It is related to the identity x(l : x) =1 since this

implies the identity

a=al=a(l sa)(ls(L:a))=1{L 2 (Lza))s 1y (Lsa) .

ve

If Artin equivalence were & coigruence relation for 211l operations, so that the
analog of the theorem of Glivenko held, then the Artin-equivalent elements would

define an £-group. With the ascending chain condition, one could prove unique
factorization into primes.

(9) One must prove lemmas (8021)--(8023) of POLLARD. The proof of these uses his
theorem 8.7 (Mevery prime ideal is maximal"), which must also be proved since to
assume the corollary to lemma 2 of § 11 would involve circular reasoning.
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By theorem 8, Artin equivalence is a congruence relation for joins. It is also
a congruence relation for multiplication, since if 2 = v s ‘then
lrax=(Lz:a) :x=(lL:tb) sx=12hx .
For it to be a congruence relation for meets, it is necessary and sufficient that

L be integrally closed, in the sense that "a : a =1 for all a€ L ; this is
proved in [DIC], p. R43.

13+ Applications to algebraic geometry.

The applications of ideal theory to algebraic geometry are very different from
its applications to algebraic number theory. Whereas ideals are needed to obtain
a general unique factorization theorem for domains of algebraic integers, the

opposite is true for polynomial rings.

One therefore expects the spplication of lattice theory to algebraic geometry
to be very different from those to algebraic number theory. Those tc algebraic
geometry are associated with the complete commutative integral 2-demigroup of
all ideals of the ring B = K[Xﬁ g oee Xf] of polynomials defined in example
6y & 3

They stem from the polarity between certain ideals of E and algebraic varieties,

defined by the relation p(x; , ese x%) = 0 Dbetween polynomials pe€ E and
points x:&l,“a,%)indﬁm wwweAﬁm.TMdmnymmwmh
lattices defined by this polarity have as elements the algebraic verieties of
Ar(K) , and ideals of E which are their own radicals VE', respectively. The
former are obviously a distributive lattice, and the latter satisfy the ascending

chain condition.

These facts have been exploited in [LT2] (Che IX, § 8) ; the discussion will
not be repeated here (10) « It can also be shown, at least if K is the real or
complex field, that the dimension of an algebraic variety V is the biggest n
such that V contains a chain whose ordinal number is W or more (by the

ascending chain condition, every chain of algebraic varieties is well-ordered).

I know of no complete characterization (up to isomorphism) of the lattice of all
algebraic varieties in the plane (for r =2 ), let alone in higher dimensionse
To characterize the £f-demigroup of all ideals of K(x; , cee X&) up to

1

( O) For a releted discussion, which does not sssume the axiom of choice, seeB:
DUBREIL (P.) et DUBREIL-JACOTIN (M,-L.). - Legons d'algébre moderne (Footnote (7)) 3
Pe 211223,
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isomorhism would seem even more difficult. Offhand, it looks like a major and

every interesting problem.

Since any two complex algebraic curves have at least one point in common, while
the same is not true for real algebraic curves, the characterization will certain-

ly depend on the base field K .

14. Irreducible.and primary elementse

The important concepts of the radical of an ideal, of primary ideal, and of
irreducible ideal are easily generalized from ideals in polynomial rings to
elements of any commtative, integral {-demigroup which satisfies the ascending

chain conditione

Namely, the radical Va of a is defined as the join of all elements x € D
L a for some integer n = n(x) 3 Va also satisfies \/:;NS a
for some N =DN(a) o« An element q is defined to be primary when abg q implies
that either ag q or that b <& q for somefnite deger v =r(a , b) + As in

lattices generally, an element o 1is defined to be (meet~) irreducible whon

satisfying <

Xny=a implies Xx=a or y=24ae

Many ¢f the properties of the radical of an ideal, and of primery and irreducible
ideals are easily proved abstractly in any £-demigroup having the properties
specifieds For instance, ¢ is primary if and only if its radical Vq is a prime
element (i. e.,,if and only if p 2 q 2,pN for some prime element p )e

However, it is not necessarily true that every irreducible element is primary,
evon if D is assumed to be 2 modular lattice (ll).

This is another serious shortcoming of the theory of £-demigroups, from the
point of view of applicationse

15, Frobenius condition.

We now turn our attention to applications of the concept of residuation to non-
commutative 2-demigroupse. We begin by considering the full matrix algebra Mn(D)

of all nxn matrices with entries in a given division ring D « The linear
associlative algebra Mn(D) is isomorphic to the ring of all endomcrphisms of the
n-dimensional left vector space Vn(D) over D .

(**) WARD (Morgan) and DIIWORTH (Re Pe)s = Residusted lattices, Transe Amers
ma‘bh. SOCQ, te 45, 1939, Pe 335~3544
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It is easy to verify that if a right-ideal A of N%(D) contains one endomarphism
with a given mull~space S e Vn(D) , then it contains all endomorphisms of VnCD)
with null-space in S . Further, the set of all such endomorphisms is a right-
ideal J(8) » Likewise, if a lefteideal contzins an endomorphism with renge S ,
then it contains all endomorphisms with range in S ; moreover the set of all
such endomorphisms is s left-idesl K(S) o Finally, 0 .+ K(S) =J(S) and
0 *s J(S) = K(S) » This shows that N%(D) is a Frobenius ring, in the sense of
the following definition :

DEFINITION. - A ring in which 0 »,° (0 °. J) =J for all right=ideals J and
*e (0 »* K) =K for all left-ideals X is a Frobenius rings A residuated
m~poset in which 0 > (0 °s h) = h for all right-ideal elements h and
(0 «* X) =k for all left-ideal clements k is a Frobenius m-posete

THEOREM 14o = Let A be any semisimple linear associative algebra of finite order
over a field F . Then the linear subspaces ( F-modules) of A form a Frobenius
m-lattice M(A) , which is also a projective geometry. The right-ideal elements of
M and the left-ideal elements of M are dually isomorphic complemented modular
latticese

The preceding result is a straightforward application of the Wedderburn theory
of semisimple algebras, in the light of the remarks of paragraph one abovee The
Wedderburn theory shows that A is the direct sum of full matrix algebras
A, = M (l)CD .) , where the D; ere division algebras over F « The right-ideal
elementu of the m-lattice u(A) form lattices, which are the direct unions of
those Hi = H(Ai) , for the direct summands Ai o Since each Hi is a complemented
moduler Frobenius m-lattice, the same is true of their direct union, completing
the proof.

It is easy to construct other Frobenius rings. Thus the nilpotent algebra of all
polynomials in x , modulo any % o is a commutative Frobenius rings Its ideals
are generated by 1 ; x , X , eso , prl , 0 respectively ; they form a chain

in which O : ( ) = ( n-n)

But it is harder to construct other Frobenius rings whose rightwideals and left-
ideals form complemented (modular) latticess If A is such a ring, with radical
N , then A must contain a right-idecl H complementary to N o Here HNLH
since H is a right-ideal, and HN KN since N is a (wo-sided)~ideals Hence
WL Ha N =0 Likewise, & must contain a complememtery left—ideal K such
that NK =0
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Regular ringse - In his study of continuous-dimensional geometries, von NEUMANN

defined a regular ring as a ring in which every element a has a relative inverse
x such that axa = a « A finite-dimensional linear associative slgebra is regular
if and only if it is semisimple ; the equational definition given above has the

advantage of being applicable to rings of operatorse

In any regular ring R, aR = axa RL eR , where e = ax satisfies
e2=(ax)(ax) = (exa) x = ax = e » Conversely, eR = ax R < aR ; hence aR =eR .
This shows that every principal right~ideal of R is generated by an idempotent.
A similar argument works for left-ideals. Conversely, any ring in which every
principal right-ideal is generated by an idempotent satisfies e = ax where

2
e™ = ax ax = eax » But we cannot cancel x 1o set axa =e «

The lattice of principal right-ideals of any regular ring is complemented, since
eR and (1 = e) R have in common only elements y for which
(L-e) y=(L~e)ez=0 and ey=-e(l -e) z =0 ;5 hence for which
y=1ly= (L ~e) y + ey =0 » Likewise, the lattice of principal left-ideals of

any regular ring is complementeds

I do not know whether the product of two principal right-—ideals of a regular

ring is itself a principal righi~ideal. -

16e Algebra of relationse

‘The algebra of all binary relations on an arbitrary set I of elements
Oy Py Yy eoee provides a final application of the theory of f-demigroups. A
.~ bimary relation on I may be defined by its relation matrix ||z ||, by letting
rdp =1 if the relation holds between o and f , and letting r,g =0 if it
does note Relation matrices form a Boolean algebra if Iquﬁn<§ I ﬁxﬁll is defined
for all a o When miltiplied by the rule

to mean r < s

af ~ ap
(24) rs = t means that taﬁ ::$ Tay Syp ’
one gets an { -demigroup Dn , where n is the cardinality of I .

This £-demigroup can also be obtained as a special case of example 8, § 4. Dn
is isomorphic with the £-demigroup of all join-endomorphisms of the Boolean
algebra 2™ . It can also be obtained from example 2, § 1. Let G be the demlgroup

of elements eij end O , with the multiplicetion rules for matrix units
feﬂ if j =%k

13 €y =
\Oifjrék ,

(25) e
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and eij 0= Oei]' = 0 « Then 0n is isomorphic with the #£-demigroup of all
subsets of « which contain O ; this brings out the analogy with full matrix
algebra. Finally, Dn can be defined as the 2-demigroup of all {-modules in
the f-ring of all real n x n mtrices,

Though the algebra of relations was studied in the nineteenth century, in
connection with the logic of relations, the systematic study of postulates for
reletion algebras dates only from 1945, The first characterization of relation
algebras as fL-demigroups was given in [LTR] (Che XIII, § 5-87).

The L-demigroup D = has amro O = llofl and & unity e = 8,; , as well as an
I=]||1| .Each r = HrlJH in Dn has a converse ? = ”r,]:n.” « The operation of

conversion can either be considered as e primitive operation peculier to relation

algebra, or it can be defined from the usual {¢-demigroup operations as followse

DEFINITION. «~ A relation algebra is a residuated f£-demigroup L with zero O
and unity e , which is a Boolean algebra when congidered as e lattice. Further,
it is assumed that

(26) ' et «°r? =e! *or! forall r ’
(27) el ¢ (rs)? = (e? o* s?)(e? o* r?) forall T , 8 9
(28) et ,° (e“ %o I‘) =r for all r ‘.

o
The element ef ¢ rt =e? 2" rt =e? *o r! is in fact the converse ruof T,
and equations (27)-(28) simply reformulate the identities ?é =% and FT=r .

Note that the definition of a relation algebre is only equetional if one admits

complementation and residuation as fundamental operations. One can replace the

two binary residuation operations by the unary conversion operation, using two
identities communicated to the author by DAVIDON

(29) re® s=(8r!)! and r e s = (r'3 .
. e U o] . o |
The identities T8 = 8¢ and P = imply € = e j using themand ru s = g U ké‘ P
. . . P N U S O o ) . R
which implies rn s =7 N8 and T!' =7P' , onc obtains (26)=(28) trivially from

the definitions (29). This proves

THEOREM 15. - A relation algebrs is an f-~demigroup L with unary operations of
complementation and conversion such that complementation mokes I into a Boolean

algebra.
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(30) Y5 =%,
in which (29) define residualss

Since T o° & can be defined by the identity [s(r «* s)]Jur =r and the
identical implication sxur =r dimplies X U(r o* s) =r o* 5 , theorem 15

mekes possible the epplication of the concepts of universal algebra.

A simpler, strictly equational definition of a relation algebra has been derived
by TARSKI. TARSKI has shown thet the equation

(31) Fre)t] ust = s

is sufficient tc take care of the properties of residuation. In view of (30), it
is equivalent (writing r =x and s =y') to [xGy)t]uy=y, or (using
(R9)) to =(y »* x) £ y - Hence we have 3

THEOREM 16 (TARSKI). -- A relation algebre is an {-demigroup which is a Boolean

algebra with a unary conversion operation satisfying (30)-(31).

To apply the concepts of universal algebra (Ch. V) using the sbove equational
definitions, one must require subalgebras to he closed under residuation and
conversion, and congruence relations to respect residuatione Thus, one must
change the simple concepts of m-gublattice and congruence relation for demigroups

used in the earlier sections of this papere.

17, Continuous relation algebrase — The relation algebras considered in § 16 ere

all atomic Boolean algebras, when considered as latticess. Since many of the most
interesting Boolean algebras arising in analysis ere continuous, it is natural
to try to construct continuous relation algebras. This appears to be difficult,

for the following reasone

Considered as Boolean algebras, finite relation algebras obviously correspond

to the algebra of all subsets of a product space (the space of 21l entries of

the relation matrix).

Correspondingly, the corrcspondences x - Ix and x - xI project the given
relation algebra R onto two isomorphic Boolean subalgebras of Ry, say A and
x. #s a Boolean algebra, theny R is the direct product A x K $ moreover
conversion is an involutory sutomorphism of R which interchanges A and K .
To reconstruct R as a relation algebra from A I s 1t suffices to define

relation mltiplication in A « B .




There are various natural ways to define direct products of infinite Boolean
algebrase For instance, let A ® % be the Boolean algebra of all Borel subsets
of [0, 1], modulo subscts of measure zero. Then one naturally defines
A x & as the set of all Borel subsets of the unitsjuare 0<x, y<1l , that
is, of all Borel functions r(x , y) having O and ! for velues. The natural
definition of the relation product +t(x , y) of two such functions r(x,y and

s(x,y is:

(l i.f/olr(x,z)S(Z,Y)>0 ’
(32) tx, ¥) = \’
ko if /O&r(x,z) s(z 5,9 =0 o

However, this relation algebra, considered as an {~derdgroup, does not have a
unity 1 in the sense (3)s The matrix of the identity function 1 ¢ x =y is
defined by

{l if x=y
(33) rx,y =/

\O if x;éy .

In analysis, such matrices (or integral kernels) are identified with the matrix
0

The preceding simple discussion indicates a major obstacle to constructing
continuous analogs of relation algebras : providing them with a multiplicative
unitye If one is willing to forego the existence of a multiplicative unity, one
caen construct various kinds of relation algebras from appropriate classes of
Boolean algebrase

Namely, one can construct an algebraic direct product for eny A « If A is a
complete Brouwerian lattice, one can construct A x ¥ esa topological direct
product, by analogy with the construction of open sets in a product space from
the open sets in the factore Finally, if A is a measure algebra, one can
construct A x X by analogy with the construction of product measurese We omit

the deteils, noting only that none of the alove constructions yields a unity in
generale

Some other recént results on the algebra of relations can be found in the Notes
alluded to at the beginning.




