SÉMINAIRE DUBREIL. ALGÈBRE ET THÉORIE DES NOMBRES

GABRIEL THIERRIN

Quelques problèmes concernant la structure des anneaux

Séminaire Dubreil. Algèbre et théorie des nombres, tome 13, n° 2 (1959-1960), exp. n° 22, p. 1-8

http://www.numdam.org/item?id=SD 1959-1960 13 2 A11 0>

© Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1959-1960, tous droits réservés.

L'accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

23 mai 1960

QUELQUES PROBLÈMES CONCERNANT LA STRUCTURE DES ANNEAUX

par Gabriel THIERRIN

1. Radical corpoidal d'un anneau.

Un anneau A est dit interversif à droite, si l'on a

abA = baA, quels que soient a , $b \in A$

On voit facilement qu'un anneau A est interversif à droite, si et seulement si pour tout triple a , b , c \in A , il existe x \in A tel que l'on ait

abc = bax

Un idéal B d'un anneau A est dit <u>interversif à droite</u>, si l'anneau-quotient A/B est interversif à droite. Tout idéal contenant un idéal interversif à droite est interversif à droite. En particulier, tout idéal d'un anneau interversif à droite est interversif à droite.

Un A-module (à droite) % est dit interversif, si l'on a

uabA = ubaA, quels que soient $u \in M$, a, $b \in A$

Si l'anneau A est interversif à droite, tout A-module est évidemment interversif.

THÉORÈME 1. - Pour qu'un anneau A soit un corps, il faut et il suffit qu'il existe un A-module I irréductible, fidèle et interversif.

La condition est nécessaire. Il suffit de prendre m = A.

La condition est suffisante. Le A-module $\mathbb R$ étant irréductible, si $0 \neq u \in \mathbb R$, on a d'après N. Jacobson ([1], chapitre I), $\mathbb R = uA \cong A$ - (0:u) où (0:u) = 3 est un idéal è droite modulaire maximal. Soient $t \in \mathfrak I$ et $x \in A$; on a $txA \subseteq \mathfrak I$ et utxA = uxtA = 0. D'où $xtA \subseteq \mathfrak I$. L'ensemble

$$\mathfrak{I}^{\bullet}.A = \{a \mid a \in A, aA \subseteq \mathfrak{I}\}$$

est un idéal à droite de A et $\Im \subseteq \Im$.A. On a donc soit \Im .A = \Im , soit \Im .A = A. Si \Im .A = A, on a $A^2 \subseteq \Im$, ce qui est impossible puisque \Im est modulaire. Par conséquent \Im .A = \Im . Comme $xt \in \Im$.A, on a $xt \in \Im$ et donc \Im est un idéal bilatère. Soit

$$\mathfrak{N} = \{ \mathbf{v} | \mathbf{v} \in \mathbb{M}, \mathbf{v} = 0 \}$$

Cet ensemble π est un sous-module de π et $u \in \pi$. Donc $\pi \neq 0$ et, puisque π est irréductible, $\pi = \pi$, ce qui entraîne $\Im_{\subseteq}(0:\pi)$. Comme π est fidèle, on a $(0:\pi) = 0$. Par conséquent, $\Im = 0$, et Λ est un corps.

COROLLAIRE. - Pour qu'un anneau A soit un corps, il faut et il suffit qu'il soit primitif et interversif à droite.

La condition est évidemment nécessaire. Elle est suffisante. En effet, l'anneau A étant primitif, il existe un A-module II irréductible et fidèle. Comme A est interversif à droite, le module II est interversif, et donc A est un corps.

Un idéal K d'un anneau A est dit <u>corpoïdal</u>, si l'anneau-quotient A/K est un corps. On voit facilement qu'un idéal est corpoïdal si et seulement s'il est un idéal à droite modulaire maximal.

THEOREME 2. - Pour qu'un idéal K d'un anneau A soit corpoidal, il faut et il suffit qu'il existe un A-module \mathbb{R} irréductible et interversif, tel que l'on ait $\mathbb{R} = (0 : \mathbb{R})$.

La condition est nécessaire. L'anneau-quotient A/K étant un corps, il existe, d'après le théorème 1, un A/K-module $\mathbb R$ irréductible fidèle et interversif. Mais ce A/K-module $\mathbb R$ peut aussi être considéré comme un A-module. Le A-module $\mathbb R$ est également irréductible, et l'on a $\mathbb K=(0:\mathbb R)$. Montrons que le A-module $\mathbb R$ est interversif. Soient a , b \in A et u \in $\mathbb R$. Si u = 0 , on a évidenment uabA = ubaA = 0 . Soit u \neq 0 . Si ab \in K , alors ba \notin K . De abA \subseteq K et baA \subseteq K suit uabA = ubaA = 0 . Si ab \notin K , alors ba \notin K , abA \notin K et baA \notin K . Comme K est un idéal à droite maximal, on a

$$A = K + abA = K + baA$$

L'élément u étant différent de zéro, on a, puisque π est un A-module irréductible, uA = π . D'où

$$uA = uK + uabA = uK + ubaA = M$$

Comme uK = 0, on a par conséquent

$$uabA = ubaA = M$$

La condition est suffisante. En effet, $\mathbb R$ peut être considéré comme un A/K-module irréductible et fidèle, car on a $K=(0:\mathbb R)$ et $\mathbb R$ est un A-module irréductible. On voit d'autre part facilement que $\mathbb R$, considéré comme A/K-module, est aussi interversif. Par conséquent, l'anneau-quotient A/K est un

corps d'après le théorème 1.

Soient A un anneau quelconque et Σ l'ensemble de tous les A-modules irréductibles et interversifs. Le novau C de Σ , c'est-à-dire l'ensemble

$$C = n \{ (0 : \pi_i) | \pi_i \in \Sigma \}$$

est appelé le <u>radical corpoidal</u> de A . Si l'ensemble Σ est vide, le radical corpoidal de A est, par définition, A lui-même.

Si $\mathbb R$ est le radical (dans le sens de $\mathbb N$. JACOBSON, [1]) de $\mathbb A$, on a $\mathbb R\subseteq\mathbb C$. Si $\mathbb A$ est interversif à droite, alors $\mathbb R=\mathbb C$.

THÉORÈME 3. - S'il est distinct de A, le radical corpoïdal C d'un anneau A est l'intersection de tous les idéaux corpoïdaux de A.

C'est immédiat, d'après le théorème 2.

Un anneau A est dit c-semi-simple, si $A \neq 0$ et si le radical corpoïdal de A se réduit à 0 .

THEOREME 4. - Si le radical corpoïdal C de l'anneau A est distinct de A, l'anneau-quotient A/C est c-semi-simple.

L'intersection des idéaux corpoïdaux de A étant C, d'après le théorème 3, il s'ensuit facilement que l'intersection des idéaux corpoïdaux de A/C se réduit à zéro. Donc A/C est c-semi-simple.

THEOREME 5. - Un anneau A est isomorphe à une somme sous-directe de corps, si et seulement s'il est c-semi-simple.

Si A est c-semi-simple, l'idéal (0) est l'intersection des idéaux corpoïdaux $K_{\bf i}$ de A. Par conséquent, A est isomorphe à une somme sous-directe des anneaux-quotients $A/K_{\bf i}$ qui sont des corps. Inversement, il est immédiat que si A est isomorphe à une somme sous-directe de corps, A est c-semi-simple.

Si a est un élément fixé d'un anneau A, on désigne d'après F. JACOBSON [1] (même si A ne contient pas d'élément unité) par (1 - a) A l'idéal à droite $\{x - ax \mid x \in A\}$ et par A(1 - a) l'idéal à gauche $\{x - xa \mid x \in A\}$.

Un élément $z \in A$ est dit c-quasi-régulier si l'idéal à droite (1-z) A n'est contenu dans aucun idéal corpoïdal de A.

PROPOSITION 1. - Un élément $z \in A$ est c-quasi-régulier si et seulement si l'idéal à gauche A(1-z) n'est contenu dans aucun idéal corpoïdal de A.

La démonstration découle immédiatement du lemme suivant :

LEMME. - Si K est un idéal corpoidal de l'anneau A, les relations $x - ax \in K$ et $x - xa \in K$ sont équivalentes.

Montrons par exemple, que $x-ax \in K$ entraı̂ne $x-xa \in K$. Si $x \in K$, c'est immédiat. Si $x \notin K$, il existe, puisque K est corpoidal, des éléments e et x' tels que

$$xx' \equiv e(K)$$
, $ye \equiv y(K)$ pour tout $y \in A$.

De $x - ax \in K$ suit $x \equiv ax (K)$, $xx' \equiv axx' (K)$, $e \equiv ae \equiv a(K)$, D'où

$$x \equiv xe \equiv xa(K)$$
, $c'est-a-dire x - xa \in K$

Remarquons que tout élément quasi-régulier à droite ou à gauche est c-quasi-régulier.

PROPOSITION 2. - Un élément z de A est c-quasi-régulier si et seulement si l'idéal A est le seul idéal interversif à droite contenant (1 - z) A.

Supposons que z soit c-quasi-régulier. S'il existe un idéal interversif à droite H, différent de A, contenant (1 - z) A, cet idéal H est modulaire, donc contenu dans un idéal à droite maximal 3. L'idéal

$$P = 3. A = \{a \mid a \in A : Aa \subset 3\}$$

est primitif et $H \subseteq P$. Comme H est interversif à droite, P l'est également. Par conséquent, l'anneau-quotient A/P est primitif et interversif à droite, donc un corps d'après le corollaire du théorème 1. L'idéal P est par suite corpoïdal et contient (1-z)A, contre l'hypothèse. Inversement, il est immédiat que si P est le seul idéal interversif à droite contenant P est par suite corpoïdal d'idéal corpoïdal contenant P est par suite corpoïdal est interversif à droite.

Un idéal à droite de A est dit c-quasi-régulier, si tous ses éléments sont c-quasi-réguliers.

THÉORÈME 6. - Le radical corpoidal C d'un anneau A est un idéal c-quasirégulier contenant tout idéal à droite c-quasi-régulier.

Soit $z \in C$. Si z n'est pas c-quasi-régulier, (1-z) A est contenu dans un idéal corpoïdal K. D'après le théorème 3, $z \in K$. Si x est un élément quel-conque de A, on a $x-zx \in K$ et donc $x \in K$. D'où K=A, ce qui est

impossible. Par conséquent, tout élément de C est c-quasi-régulier.

Soit T un idéal à droite c-quasi-régulier et soit $z \in T$. L'élément zx est c-quasi-régulier pour tout $x \in A$. Si $z \notin C$, il existe alors un idéal corpoïdal K tel que $z \notin K$. Comme K est corpoïdal, il existe des éléments e et z' tels que

$$ex \equiv x$$
 (K) pour tout $x \in A$, $zz' \equiv e$ (K)

D'où zz' $x \equiv ex \equiv x$ (K) et (1 - zz') A \subseteq K . Par conséquent, zz' n'est pas c-quasi-régulier, ce qui est contradictoire.

2. Anneaux bipotents à droite.

Un anneau A est dit bipotent à droite, si l'on a

$$aA = a^2 A$$
 pour tout $a \in A$

On voit facilement qu'un anneau A est bipotent à droite, si et seulement si pour tout couple a, $b \in A$, il existe $x \in A$ tel que l'on ait $ab = a^2 x$.

Voici quelques exemples d'anneaux bipotents à droite :

- 1º Les corps et les sommes directes de corps.
- 2° Les anneaux A tels que pour chaque $a \in A$, on a soit aA = 0, soit aA = A. En particulier, tout anneau de carré nul et tout idéal à droite minimal d'un anneau quelconque sont des anneaux bipotents à droite.
- $3^{\rm o}$ Les anneaux A tels que pour tout $a\in A$, il existe $x\in A$ vérifiant l'égalité a^2 x=a .
- 4° Soit $\mathbb R$ un espace vectoriel (à gauche) sur le corps $\mathbb K$. Nous définissons dans l'ensemble-produit $\mathbb K \times \mathbb R$ une addition et une multiplication de la manière suivante :

$$(a, \mu) + (a', \mu') = (a + a', \mu + \mu')$$

 $(a, \mu)(a', \mu') = (aa', a\mu')$

On vérifie facilement que, vis-è-vis de ces deux opérations, l'ensemble-produit $\mathbb{K} \times \mathbb{R}$ est un anneau bipotent à droite.

Si nous prenons en particulier $\mathbb{R} = \mathbb{K}$, l'anneau bipotent à droite $\mathbb{K} \times \mathbb{K}$ sera appelé un pseudo-corps à droite.

Remarquons que si A est un anneau bipotent à droite, on a

$$a^n A = aA$$
 pour tout $a \in A$ et tout entier positif n

PROPOSITION 3. - L'ensemble π des éléments nilpotents d'un anneau A bipotent à droite est un idéal et l'on a $\pi A = 0$.

Soit $a \in \mathbb{R}$. Il existe un entier positif n tel que $a^n = 0$. D'où $a^n A = aA = 0$.

Par conséquent, $\mathfrak N$ est l'annulateur à gauche de $\mathbb A$, donc un idéal.

PROPOSITION 4. - Pour tout élément non nilpotent a d'un anneau A bipotent à droite, il existe $x \in A$ tel que a^2 x soit un élément idempotent différent de zéro.

L'égalité a^4 A = aA entraîne l'existence d'un élément x tel que a^4 $x = a^2$. On vérifie facilement que l'élément a^2 xa^2 - a^2 est nilpotent. D'où, d'après la proposition 3, a^2 xa^2 x - a^2 x = 0. Par conséquent, l'élément a^2 x est idempotent et a^2 $x \neq 0$.

PROPOSITION 5. - Le radical R (dans le sens de N. JACOBSON) d'un anneau bipotent à droite A est formé de l'ensemble de ses éléments nilpotents.

D'après la proposition 3, l'ensemble $\mathcal R$ des éléments nilpotents de $\mathbb A$ est un nilidéal; donc $\mathcal R \subseteq \mathbb R$. Si $a \in \mathbb R$ et si a n'est pas nilpotent, il existe, d'après la proposition 4, un élément $\mathbf x$ tel que $\mathbf a^2 \mathbf x$ soit un idempotent non nul, et l'on a $\mathbf a^2 \mathbf x \in \mathbb R$, ce qui est impossible, car le radical ne contient pas d'éléments idempotents non nuls. Donc $\mathbb R \subseteq \mathcal R$.

THEORÈME 7. - Pour qu'un anneau A soit un corps, il faut et il suffit qu'il soit primitif et bipotent à droite.

La condition est évidemment nécessaire. Elle est suffisante. L'anneau A étant primitif, son radical se réduit à zéro. Par conséquent, d'après la proposition 5, A ne contient pas d'éléments nilpotents différents de zéro. D'autre part, (0) est un idéal premier. Soient ab = 0 et x un élément quelconque de A. De ab = 0 suit (bxa)² = 0, donc bxa = 0. Par conséquent, bAa = 0, ce qui entraîne, puisque (0) est premier, a = 0 ou b = 0. L'anneau A est donc un anneau sans véritables diviseurs de zéro. Soit a un élément quelconque non nul de A. D'après la proposition 3, il existe x tel que a² x = e soit un élément idempotent non nul. Comme A est sans diviseurs de zéro, e est élément unité de A. Il s'ensuit alors immédiatement que A est un corps.

COROLLAIRE. - Si R est le radical d'un anneau bipotent à droite A et si R est distinct de A, l'anneau-quotient À/R est isomorphe à une somme sous-directe de corps.

PROPOSITION 6. - Soit e un élément idempotent non nul d'un anneau bipotent à droite A. On a les propriétés suivantes :

- 1º Pour tout a , $b \in A$, l'élément ea ae est nilpotent et eae = ae , eab = aeb .
 - 2º Les idéaux à droite eA et (1 e) A sont bilatères.
 - 1° De (eae ae) 2 = 0 suit, d'après la proposition 3;

De lè, on vérifie facilement que $(ea - ae)^2 = 0$. L'élément ea - ae étant nilpotent, on a alors :

$$(ea - ae) b = eab - aeb = 0$$
.

2° L'idéal à droite eA est bilatère, car si ea \in eA , on a xea = exa \in eA . Il en est de même pour l'idéal à droite (1 - e) A ; en effet, x(a - ea) = xa - xea = xa - exa .

THÉORÈME 8. - Tout anneau A, bipotent à droite et sous-directement irréductible, est soit un anneau de carré nul, soit un corps, soit un pseudo-corps à droite.

Montrons d'abord que pour chaque $a \in A$, on a soit aA = 0, soit aA = A. En effet, supposons que $aA \neq 0$. Dans ce cas, la proposition 3 montre que l'élément a n'est pas nilpotent. D'après la proposition 4, il existe un élément x tel que a^2 x = e soit un élément idempotent différent de zéro. Cet élément e est élément unité à gauche de A. En effet, d'après la proposition 6, eA et (1-e) A sont des idéaux bilatères et l'on a eA n(1-e) A=0. L'anneau A étant sous-directement irréductible et l'idéal eA étant différent de zéro, on doit avoir (1-e) A=0, c'est-à-dire x=ex pour tout $x \in A$. De $A=eA=e^2$ $xA \in eA$ suit A=eA.

Supposons maintenant que l'anneau A ne soit pas de carré nul. De ce qui précède, on déduit l'existence dans A d'un élément unité à gauche e . Posons K = Ae . On a $K \neq 0$ et e est élément unité de K . Soit $k \in K$, $k \neq 0$. De $kA \neq 0$ suit kA = A et donc kK = kAc = Ae = K; par conséquent, K est un corps.

Posons T = A(1 - e). On a A = K + T (somme directe pour l'addition). D'autre part, TA = 0; en effet

$$(x - xe) a = xa - xea = xa - xa = 0$$

Si T = 0, on a A = K et A est un corps. Supposons $T \neq 0$. Soit t un élément fixé de T , $t \neq 0$. On voit facilement que l'ensemble Kt est un idéal non nul de A et que Kt $\subseteq T$. Montrons que Kt = T . En effet, soit $v \in T$, $v \neq 0$. L'ensemble Kv étant un idéal non nul de A, on a, puisque A est sous-directement irréductible, Kt ∩ Kv ≠ 0 . Par conséquent, il existe k , $h \in K$ tels que $kt = hv \neq 0$. D'où, puisque K est un corps, h^{-1} kt = ev = v , c'est- \hat{c} -dire $v \in Kt$. De ce qui précède, il résulte que si t est un élément fixé non nul de T, tout élément v de T est de la forme v = kt, avec $k \in K$. Cette décomposition est d'autre part unique. En effet, si v = kt = ht, on a (k - h) t = 0. Si $k - h \neq 0$, il existe $p \in K$ tel que p(k - h) = e. D'où et = t = 0, ce qui est contradictoire. Comme A = K + T, tout élément a ∈ A est d'une manière unique de la forme a = k + ht , avec k, h ∈ K . Soit F × K le pseudo-corps à droite défini à partir du corps K . A tout $a \in A$ faisons correspondre l'élément $(k, h) \in K \times K$. Cette application est évidemment une application biunivoque de A sur K x K . Montrons que c'est un isomorphisme d'anneau. Soit b = k' + h't avec k', $h' \in K$. On a:

(1)
$$a + b = k + k' + (h + h') t$$

 $\rightarrow (k + k', h + h') = (k, h) + (k', h')$

(2)
$$ab = (k + ht)(k' + h't)$$

$$= kk' + htk' + kh't + hth't$$

$$= kk' + kh't$$

$$\rightarrow (kk', kh') = (k, h)(k', h')$$

L'anneau A est donc un pseudo-corps à droite.

THÉORÈME 9. - Tout anneau A bipotent à droite est isomorphe à une somme sousdirecte d'anneaux appartenant à l'une des catégories suivantes : anneaux de carré nul, corps, pseudo-corps à droite.

En effet, tout anneau A est isomorphe à une somme sous-directe d'anneaux sous-directement irréductibles A. Les anneaux A., étant homomorphes à l'anneau A qui est bipotent à droite, sont également bipotents à droite. Le théorème découle alors du théorème 8.

BIBLIOGRAPHIE

- [1] JACOBSON (Nathan). Structure of rings. Providence, American mathematical Society, 1956 (American mathematical Society Colloquium Publications, 37).
- [2] THIERRIN (Gabriel). Sur le radical corpoïdal d'un anneau, Canadian J. Math., t. 12, 1960, p. 101-106.
- [3] THIERRIN (Gabriel). Sur la structure d'une classe d'anneaux, Canadian math. Bull., t. 3, 1960, p. 11-16.