SÉMINAIRE DUBREIL. ALGÈBRE ET THÉORIE DES NOMBRES

DANIEL REES

Réduction des idéaux et multiplicités dans les anneaux locaux

Séminaire Dubreil. Algèbre et théorie des nombres, tome 13, n° 1 (1959-1960), exp. n° 8, p. 1-6

http://www.numdam.org/item?id=SD 1959-1960 13 1 A8 0>

© Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1959-1960, tous droits réservés.

L'accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

11 janvier 1960

RÉDUCTION DES IDÉAUX ET MULTIPLICITÉS DANS LES ANNEAUX LOCAUX par Daniel REES

Je commencerai cette conférence en rappelant quelques résultats sans démonstration.

Soit Q un anneau local de dimensions d et d'idéal maximal m . Nous écrivons k pour le corps Q/m . De même si Q $_{\mu}$ est un anneau local, μ étant un indice quelconque, nous écrivons m $_{\mu}$ pour l'idéal maximal et k pour Q $_{\mu}$ /m .

(i) Supposons que α soit un idéal m-primaire. Il existe donc un entier n_0 et un polynôme $S_{\alpha}(n)$ (le polynôme de Samuel) de degré d en n tels que la longueur $\ell(\mathbb{Q}/\mathfrak{A})$ soit égale à $S_{\alpha}(n)$ si $n>n_0$.

Si nous écrivons

$$S_{\alpha}(n) = e(\alpha) n^{d}/dl + \cdots$$

e(3) s'appelle la multiplicité de l'idéal a .

(ii) BHATTACHARYA [1] a donné une généralisation de ce résultat. Supposons que α et b soient deux idéaux m-primaires. Il existe des entiers m_0 , n_0 et un polynôme B_{α} , (m, n) de degré d en m et n tels que $\ell(\mathbb{Q}/\alpha^m \, h^n)$ soit égal à $B_{\alpha,b}$ (m, n) si $m > m_0$ et $n > n_0$. Les coefficients des termes m^d et n^d dans $B_{\alpha,b}$ (m, n) sont, respectivement, $e(\alpha)/dl$ et e(b)/dl.

(iii) Si A est un anneau noéthérien et α un idéal de A , un idéal b de A est une réduction de α si b c α et s'il existe un entier k tel que :

$$a^{k+1} = a^k b$$
.

Donc, si r > k,

$$a^r = a^k b^{r-k} = b^{r-k}$$

Il en résulte que, si A = Q et α , b sont m-primaires

$$S_{\alpha}(r) > S_{\beta}(r - k) > S_{\alpha}(r - k)$$

et donc

$$e(\alpha) = e(b)$$
.

(iv) Un anneau local Q est appelé "quasi-non mixte" si, pour tout idéal minimal p de l'idéal zéro dans l'anneau complété \overline{Q} de Q,

$$\dim \overline{\mathbb{Q}}/p = d = \dim \mathbb{Q} = \dim \overline{\mathbb{Q}}$$

Si Q est un anneau local intègre quasi-non mixte, nous avons le résultat suivant : Supposons que $R=\mathbb{Q}[\lambda_1$, ..., $\lambda_n]$ soit un anneau intègre et que \mathfrak{p} soit un idéal premier de R tel que $\mathfrak{p}\cap\mathbb{Q}=\mathfrak{m}$. Soient $K=R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$ et F. G les corps des fractions de \mathbb{Q} , R. Donc

$$\dim R_p + \dim_k K = \dim Q + \dim_F G$$

Cette formule est la formule de dimension de NAGATA. En particulier, si G=F et si K est une extension finie de k, R a une dimension égale à dim Q.

Maintenant, je donne le résultat qui est l'objet de cette conférence.

Si Q est un anneau local quasi-non mixte, et si α et b c α sont deux idéaux m-primaires de Q qui vérifient la condition $e(\alpha) = e(b)$, alors b est une réduction de α .

Nous utilisons, comme outil, un anneau gradué R_{α} . Cet anneau est le sous-anneau de Q[t], où t est une indéterminée sur Q, constitué par les éléments i=n

Supposons que $\mathfrak X$ soit un idéal homogène de R_{α} (dans tout ce qui suit, un idéal de R_{α} sera toujours un idéal homogène). Considérons l'ensemble $\mathfrak X_{\mathbf r}$ des éléments $\mathbf x$ de $\mathbf Q$ tel que $\mathbf x\mathbf t^{\mathbf r}$. Cet ensemble est un idéal de $\mathbf Q$ et

- (i) $\alpha^r \supset \mathfrak{X}_r \supset \mathfrak{X}_{r+1} \supset \mathfrak{X}_r \alpha$.
- (ii) Comme R_{α} est noethérien, il existe un entier k tel que, si $r \ge k$,

$$\mathfrak{X}_{r+1} = \mathfrak{X}_r \alpha$$

et par conséquent $\mathfrak{X}_{r} = \mathfrak{X}_{k} \quad \alpha^{r-k}$.

On appelle idéal impropre de R_{α} un idéal \mathfrak{X} tel que $\mathfrak{X}_{\mathbf{r}} = \alpha^{\mathbf{r}}$ si \mathbf{r} est suffisamment grand. Autrement \mathfrak{X} est appelé idéal propre. Maintenant, considérons un idéal \mathbf{b} \mathbf{c} $\mathbf{\alpha}$ de \mathbb{Q} . Soit \mathbf{b}_1 , ..., $\mathbf{b}_{\mathbf{m}}$ un système fini de générateurs de l'idéal \mathbf{b} et soit \mathbb{B} l'idéal $(\mathbf{b}_1$ t, ..., $\mathbf{b}_{\mathbf{m}}$ t) de \mathbf{R}_{α} . Il est clair que \mathbb{B} est impropre si, et seulement si \mathbf{b} est une réduction de α . Désormais, nous supposons que \mathbf{b} n'est pas une réduction de α et donc \mathbb{B} est un idéal propre. Nous choisissons un idéal propre maximal \mathbb{B} de \mathbf{R}_{α} qui contienne \mathbb{B} . Il n'est pas difficile de montrer que \mathbb{B} est un idéal premier. De plus

$$\alpha^{r} \supset \beta_{r} \supset b\alpha^{r-1} \supset b^{r}$$

et, par conséquent

$$r^d e(\alpha) \leq e(\beta_r) \leq r^d e(b)$$
.

Il en résulte que, pour montrer que b est une réduction de α si e(b) = e(a), il suffit de montrer que, si β est un idéal propre maximal de R_{α} , on a

$$e(\mathfrak{P}_r) > r^d e(\alpha)$$
.

Nous associons avec l'idéal premier β de R_{α} , l'anneau local $Q_{\underline{\beta}}$ constitué par des fractions $xt^{\mathbf{r}}/yt^{\mathbf{r}}$ telles que $xt^{\mathbf{r}}$, $yt^{\mathbf{r}} \in R_{\alpha}$ et $yt^{\mathbf{r}} \notin \beta$.

Maintenant, supposons que $\mathfrak X$ soit un idéal de R_{α} . Nous associons avec $\mathfrak X$ l'idéal $\mathfrak X_{\mathfrak P}$ de $Q_{\mathfrak P}$ constitué par les fractions $\mathsf{xt^r/yt^r}$ avec $\mathsf{xt^r} \in \mathfrak X$ et $\mathsf{yt^r} \notin \mathfrak P$. Réciproquement, à un idéal $\mathsf q$ de $Q_{\mathfrak P}$, nous associons un idéal homogène $\mathsf q^*$ de R_{α} . Un élément $\mathsf{xt^r}$ de R_{α} est contenu dans $\mathsf q^*$ si $\mathsf{xt^r/yt^r} \in \mathsf q$ pour quelques $\mathsf{yt^r} \notin \mathfrak P$.

Les faits suivants sont élémentaires, et j'omets les démonstrations.

(i)
$$(q^*)_{\mathfrak{P}} = q .$$

- (ii) $(x_p)^*$ est le composant isolé x_p de x, où S est la partie multiplicativement stable constituée par les éléments homogènes de R non contenus dans p.
 - (iii) Si $_{\mathbf{q}}$ est $_{\mathbf{p}}$ -primaire, alors $_{\mathbf{q}}$ * est $_{\mathbf{p}}$ -primaire et

$$\ell(q^*) = \ell(q) \qquad .$$

(iv) Si $\mathfrak X$ est un idéal $\mathfrak P$ -primaire, $X_{\mathfrak P}$ est $\mathfrak m_{\mathfrak P}$ -primaire et

$$\ell(\mathfrak{X}) = \ell(\mathfrak{X}_{P})$$
.

IEMÆ 1. - Si \mathbb{P} est un idéal propre maximal, $\ell(\alpha^r/\mathbb{P}_r)$ est égal à $[k_p:k]$ si r est suffisamment grand, et est fini.

Ecrivons S pour l'anneau gradué R_a/P et S_r pour l'ensemble des éléments homogènes de degré r • S_0 est un corps isomorphe à k et S_r est un espace vectoriel sur k • Soit y un élément de S homogène de degré p • yS est un idéal non nul de S , donc impropre, et, par conséquent, pour r assez grand,

$$yS_r = S_{r+p}$$

Choisissons un élément fixe u de degré 1. Donc il existe un entier k tel que

$$S_r = u^{r-k} S_k$$

et la dimension de S_r est constante pour $r \ge k$. De plus, il existe un élément homogène $y \in S$, tel que $u^r = yv$, pour r assez grand.

Maintenant, k_p est isomorphe à l'anneau des fractions z/y où z, y sont des éléments homogènes de S du même degré. Mais $z/y = zv/u^r$ et, par conséquent, tous les éléments de k_p sont de la forme w/u^k . Donc la dimension de S_r est égale à $\begin{bmatrix} k_p : k \end{bmatrix}$ pour r > k. Mais la dimension de S_r est égale à la longueur de α^r/P_n .

IEME 2. - Si \mathfrak{X} est un idéal \mathfrak{B} -primaire, $\ell(\alpha^r/\mathfrak{X}_r)$ est égal à $\ell(\mathfrak{X})[k_p;k]$ si r est assoz grand.

La démonstration se fait par récurrence sur $\ell(\mathfrak{X})$.

IEME 3. - Si k est un entier tel que $P_r = P_k \alpha^{r-k}$ pour r > k, on a

$$\ell(\alpha^r/P_k^n \alpha^{r-nk}) = \ell(Q_p/m_p^n) [k_p : k]$$

pour r assez grand.

Si r > nk, et $\mathfrak{X} = \mathfrak{P}^n$, nous avons la formule

$$X_r = P_k^n \alpha^{r-nk}$$

D'ailleurs $\mathfrak{P}^{\mathbf{n}}_{\mathbf{x}} = \mathfrak{P}^{(\mathbf{n})} \cap \mathfrak{X}^{\mathbf{n}}$, cù $\mathfrak{X}^{\mathbf{n}}$ est impropre. Par conséquent,

$$(P^{(n)})_r = P_k^n \alpha^{r-nk}$$

si r est assez grand.

Mais $(P^{(n)})_{p} = m_{p}^{n}$. Donc

$$\ell (\alpha^r/P_k^n \alpha^{r-nk}) = \ell (Q_p/m_p^n) [k_p : k]$$

quel que soit r assez grand.

THÉORÈME. - La dimension de Q_P est inférieure ou égale à d . Si la dimension est égale à d , on a :

$$k^{d} e(\alpha) + [k_{p} : k] e(m_{p}) = e(\beta_{k}) > k^{d} e(\alpha)$$

Considérons la longueur de $Q/\alpha^r \, \, \mathbb{P}_k^{\ \ s}$. D'après le théorème de Bhattacharya, si r et s sont assez grands, elle est égale à $B(r,s) = B_{\alpha}^{\ \ , \, \mathbb{P}_k^{\ \ k}}$ où B(r,s) est un polynôme de degré d en r et s dont le coefficient de s^d est $e(P_k)/d$. En outre, on a :

$$\ell(Q/\alpha^r \mathfrak{P}_k^s) = \ell(Q/\alpha^{r+sk}) + \ell(\alpha^{r+sk}/\alpha^r \mathfrak{P}_k^s)$$

Si r + sk est assez grand, $\ell(\mathbb{Q}/\pi^{r+sk}) = S_{\alpha}(r + sk)$ et le coefficient de s^d dans ce polynôme est k^d $e(\alpha)/d$. Finalement, si r est assez grand (c'està-dire $r \ge r_0$, où r_0 est un entier qui dépend de S),

$$\ell \left(\alpha^{r+sk}/\alpha^r P_k^s\right) = \ell \left(Q_m/m_P^s\right) \left[k_P : k\right]$$

et si s est assez grand, $\mathcal{L}(\mathbb{Q}/m_p^s)$ est égal à $\mathbb{S}_{m_p}(s)$. Le coefficient de s dans $\mathbb{S}_{m_p}(s)$ est $[k_p:k]$ $e(m_p)/dl$.

Il en résulte :

$$B(\mathbf{r}, \mathbf{s}) = S_{\alpha}(\mathbf{r} + \mathbf{s}\mathbf{k}) + [\mathbf{k}_{\mathfrak{P}} : \mathbf{k}] S_{\mathfrak{m}_{\mathfrak{P}}}(\mathbf{s})$$

et

$$e(\mathfrak{P}_{k}) = k^{d} e(\alpha) + [k_{p} : k] e(m_{k})$$

La démonstration du résultat principal de cette conférence est maintenant facile. Il suffit de montrer que l'anneau local $Q_{\rm p}$ est de dimension d . Mais,

si Q est quasi non mixte et si a est un élément de Q tel que at \in P, et at \notin P, posons A = Q[a₁/a , ... , a_m/a] et appelons P' l'idéal premier M_P \cap A de A; on a Q_P = A_P, et d'après la formule de dimension de NAGATA, Q_P est de dimension d .

BIBLIOGRAPHIE

[1] BHATTACHARYA (P. B.). - The Hilbert function of two ideals, Proc. Cambridge phil. Soc., t. 53, 1957, p. 568-575.