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ONE DIMENSIONAL ALGEBRA AND-ITS GEOMETRIC ORIGINS

par David G. NORTHCOTT

It is well known that there is a close connection between the theory of algebraic
nunbers and thet of fields of algebraic functions of a single variable j on the
other hand such an =lgebraic function field consists of the rational functions
on an irreductible curve., It follows that the theories of algebraic numbers and

algebraic curves have nuch in comnon.

Now there is a good deal known about curve singularities and at first sight it
would appear that there is nothing really conmparable in nunber theory. The reason
for this is easy to explain. Normally when one considers an algebraic nunber field
F one deals with the ring of all algebraic integers in F and this, by its
definition, is integrally closed. The corresponding situation for a curve would
be that in which the coordinate ring was integrally closed. As is well known, such
a curve has no singularities.

It follows thet to find the theory we are secking it is natural to consider rings
of algebraic integsrs which are not integrally closed, in other words what arc
known as orders. There were studied by Dcdekind, but in his correspondence he re=-
‘corded hils disappointnont with the results he was able to obtain.

I do not know what Dedekind hoped to establish in this direction but it is clear
that, in a suitably modified form, the theory of curve singularities carries over
to Dedekind orders and forms an essential part of the local theory of such sys=
tems. Indeed one can say that what was previously done for curves alone applies
in surprising detail to a very general kind of onc-dinensional local algebra.

What I shall try to do is to sketch this gensral theory which is applicable both

to curves and orders as special cases.

The methods by which the abstract results are obtained must, because of the na=
ture of the situation, be different from those used by geometers. However the
pattern of results and the principal concepts are nost readily appreciated in
the geometric model and so I shall begin by giving a very rough sketch of the
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theory of curve singularities as propounded by M. NOETHER.

Let us consider a curve in the projective plane. Of course, dinension 2 has
a special attraction for gecmeters which is not shared by algebraists, but this
restriction will neke the reasoning easier to follow without obscuring the in-
portant features. The geonetric method of analysing singularities is to apply
a trensfornation which has a fundanental point at the singularity. iny transfor-—
nation satisfying certain general requirenents will do, but of the avallable ones
the so-called quadratic transfornations are far the sinplest. Let me therefore
recall the definition and sinpler properties of these transfornations.

Supposc that 1T and T are two planes. We shall use (x , y , z) as honoge=
neous coordinates in T while (x', y' , z') will denote coordinates in T'.

A standard quadratic
X X!

/\\ .

X 1 X1

transfornation of Tr into 7' is obtained by mapping P(x , y , z) into

Pr(x' , y', 2') where
Axt=yz, Dy'==z, Az'=xy ,

it being understood that " is just a factor of proportionality. More sinply
we nay observe that the transformation and its inverse are given by

-1

(x,5, 2)— T ’ y"l ’ z7) and (x! s T, 21) = (x'7, y"l ’ 271y,

This nakes it clear that the napping is birational for we have a one-to-one
correspondence between T and 7' if we first renove the sides of the triangles
of referencc. But consider the exceptional elsments. Each point of YZ is napped
into X' and sinilarly, for the inverse transformetion, the whole of Y'Z!

goes into X . Reversing cut point of view, we nay say that the quadratic trans-
fornation inflates the point X into the line Y'Z' . It is this property

which is so valuable in the study of singularities.
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We shall now examine what happens at X more closely by letting P tend to
X salong a line (Y = %2 . hccordingly put P = (1 , & ¥, ¢ @) then
-2-(62{5\59 ey éy) E(&M’ f 5 §) consequently (letting ¢& —>0) as
P-—wX along (Y= %7 its image P! will tend to (0 ,p,Y%) »

i
! ok \
pY =¥2 Y! (07{5”5) 7

Thus thers is o one-to-one correspondence between the directions through X and
the points of the line Y'Z! into which it is inflated. It is custonary to

call Y'Z® +the first neighbourhood of X . In this terninology, the directions
through X correspond to the points in its first neighbourhood.

After these prelinineries let C be given plane curve Suppose that we wish
to study a particular point on it. This can be any point, but it should be
thought of as a very complicated singulerity. The procedure is them to construct
a triangle XYZ of reference so that X is the singularity in question and
neither XY nor XZ is a branch tangent. Denote the distinct branch tangents

at X by Ly 5 Ly, eeo 5 Ly

X \

then their s directions through X will determine s points

g 1in the £irst neighbourhood of X o Further, since the curve
C passes through X in the directions of Iy , Ly , «e0y Ly the transforn
C' of C (when one applies the quadratic transfornation) will pass through

S~

Ll L

Xl , X2 , e 9X
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X; s X5 9 ees , X o For this reason these latter are called the points of C
which lie in the first neighbourhood of X . Now there will be points

Xil ’ Xi2 s ceo Xit in the first neighbourhcod of Xi which 1ie on C!' these
being defined, in the same nanner by neans of a further quadratic transformatione

The Xij are known as the points of C in the second neighbourhood of X .
Additionel applications of quadratic tranafornations lead us successively to
the points of C which belong to the third, fourth and higher neighbourhoods
of X . I think it helpa to inagine the systen of points which nake up the
neighbourhoods of X , arranged in a diagran thus

/s

e mm oo ==N o Second neighbourhood

X5 X3

_ First neighbourhocd

Let us cell the complete diagran the tres of neighbourhoods, and a sequence
X, X, X", ooy in which each of X' , X", ... is in the first neighbour-
hood of the point which precedes it, a branch sequence. It is known that there

are finitely nany branch sequences and that they correspond, in a natural way,
with the different analytic branches of C at X . For cxample, if X is a sime-
ple point or a cusp or, quite genecrally, if C is analytically irreductible

at X , the whole tree of neighbourhoods reduces to a single branch

Xn

X1

X
So. far wa have considered only a single curve. We rmust now discuss, very
briefly, the case of two curves C and T , both of which pass through X .
If C and I have a cormon branch tangent Iy (say) then their transforns.
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C! and ¢ both pass through Xl « This is expressed by saying that C and T
have the point X; of the first neighbourhood in cormon. In like nanner we
explain what it neans for C and [ to have cormon points in the higher neigh-
 bourhowods of X ; and then it is found that the total number of points, infini-
tely near to X , which lie on both C and [ is always finite.

After this remarkve return to the consideration of a single given curve C o The
initial quadratic transformation produces not only a curve C' but also a line
Y'Z' , namely the first neighbourhood of X , and these meet in the points

Xy 5 X5 5 scs 5, X o One now says that

S

.
19
C!' and Y'Z' are proximate to X on C ., It is precisely this notion of

X5 5 eee 3 X 5 and all points infinitely near to then, which lie on both

proxinmity which dominates the more advanced theory of curve singularities. Tine
is too short to illustrate this in any detail and so I shall only nention one
single property. This can be stated as follows :

The multiplicity of X (on C) is equal to the sun of the nultiplicities (on
C) of all the points proximate to X .

Although what I have said can give but a poor inpression of the achievenents
of the geometric method, we must pass now to the general abstract theory which it
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suggests. To effect this transition, let us review what has already been said
from a more elgebraic point of view. The rational functions on C ,; which are
finite and determinate at X . formm a ring A , the so-called local ring of C at
X, and we know, in an intuitive way, that the structure of this ring reflects the
nature of the singularity at X . The gquadratic tronsformation replaces G by C!
and X by the points X} , X, ; c0e , X o Let /\i be the local ring of C!

at X; then, since the transformation is biratioral, /\ and Ay have the

sane quotient field. Clearly the clue to the problem is to find how to derive

/\1 s No s eee g /\s by a process which only uses the ring structure of A « If
we can do this then we may expect that the process will also be applicable to
situations not found in geometry and in this way we shall arrive at a nore gene-
ral theory. To be brief, I shall begin immadiately to describe the abstract

theory which emerges when one follows out this idea.

Fron here on, A will denote & completely arbitrary one-dinensional local ring,
with naxinal ideal W and residue field /\/r.« =K + If now K€ ms then we
say thet & is superficiesl of degree s if X = w4 for all large velues
of ¥ . The superficiel elements of degree zero are the units and there always
exist superficial elements of degree s provided that s is sufficiently
large. Observe that if « is superficial of degree s and [ is superficial of
degree t then «p is supurficicl of degres s + t ; hence the set of superficial

elenents is closed under multiplicotion. Consider next the set of fornmal frac-

tions a/c , where a € m° and ¢ is superficial of degres s . Here s 1is
a freely variable degrec cf superficiality. If al/c1 and 8'2/02 are two such
fractions, we put 2 /cl A a2/02 if ccy 2 = CCy 8y for sone superfigial

element ¢ . This relation ~ is an equivalence relation. Denote by ['E] the

. . a .
equivalence class to which r belongs, thcn these classes can be nade into a

8.1 a2
L]
Cl 02

ring 5f< by satting

2, fe] et y| [
‘Cl Cy c; ¢ 4 Sy cy

SR is called the first neighbourhood ring of /A . Observe that the napping

a =— [%J is a ring-homomorphisrr A —x <% ., This is a fundanental napping and
it turns out that A - &% is an isomorphism if and only if A is regular or,
if you prefer ity a valuation ring., (This corresponds to the geonmetric situation

when X is a simple point of C ).
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Now % is found to be a semi-local ring, which inplies that it has only a
finite number of maximal idcals. Denote by /\1(1) g eee /\1(8) the rings of
fractions of <f with respect to its maximal ideals. These rings, which are all
one-dimensional local rings, will be said to be in the first neighbourhood of A
(They corrcspond precisely to the local rings of the curve C' at the points
s in the first neighbourhood of X ). Let A, be one of the
local rings in the first neighbourhood of A , then we can repeat the construction
with A; eand so obtain rings in the first neighboﬁrhood of /\l which will
be said to be in the second neighbourhood of A o Further repetitions lead, of
course, tc rings in the third, fourth and higher neighbourhoods of /N giving a
systen of - ne-dirensional local rings which we c¢all the tree of neighbourhoods of
A+ This tree is fade up of branch sequences Ay = A, A, Ny, «es, where
Npyp 18 in the first neighbourhood of /\r and, just as in the case of curves,
it is not difficult to show that the number of different branch sequences is

Xl ’ X2 ’ LN , X

finite.

Let A, be in the first neighbourhod of A then A, 1is a ring of fractions
of ®A . We have therefore 2 canonical napping ) = /\1 which we can conbine
with the original mapping /\-)-aﬁ: to obtain a hononorphisn N — /\1 « Denote
by A the ideal generated by the image of m in A, then, and this is
a fundanental result, /\177.'1 is a principal ideal, that is to say it can be
generated by a single elenente It is this fact which gives risc to the theory
of proxinity relationse.

As an illustration, let Ay= A, Ay, Ay, <oe Dbe a branch sequence and

let Yn, be the maximal ideal of A . Then, as already observed,
Npyy T, is a principal ideel, say

(v . e A

M = /\ br+l I‘+1) .

/\r+1 r r+l i r+l

One now says that /\,p is proxinate to A, if

¢
1 e

’52 ’83 eee ’t_’p P

where, it is to be unterstood, the left hand side is to be computed in AT
(This means that we first embed T-r (1 £r ¢p=1) in f\p by neans of the
nappings Ar — Ar+1 —> ses —> /\p ) « This definition opens the way to gene-—
relisations of results well known in the theory of curves. For instance, one can
show that”the multiplicity of /\ is eaqual to the sun, properly counted, of the
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multiplicities of the local rings proxinate to it. I should say that the multiplie
city of a local ring is an abstract concept, dus to Professor Sarmel, which corres-
ponds to the rmultiplicity of a point or an algsbraic variety. The definition is

a littie complicated so I shall not go into details.

In my earlier renarks, I recalled that, for curves, the different branch
sequences correspond to the different analytic branches as definsd by means of
power-series. By way of conclusion, therefore, I sk:ll indicate how this fact
becones incorporated in the new theory. The powsrs of the maxinel ideal of A
define a netric topology on the ring. We can thersfore form the cempletion A x
of A and this. oo, is a one-dinensional local ring. Let

p:-:(l) ) 13"‘"(2) s e, (%)
be the non-mexinal prime ideals of A* then I assert that there is a natural
one-to—one correspondence between the branch sequences A s A s Noy ees and
these prine ildeals. The correspondence works in this way. The first neighbour-
hood ring of A* is found to be the conpletion of the first neighbourhood ring of
A o Fron this it follows that to cach branch sequence A, Ny Doy eee
there corrcsponds a branch sequence AF 9 !\f ’ /\§ ,‘ and conversely. In
other terms, the trecs of neighbourhcods of A and A" have the sane structure.
Suppose now that a particular branch sequence A, A 19 No s eeo 1is given. Let
AF 5 /\3‘ s I 5 5 eee be the corresponding sequence then, when n is large
enough, the zero ideal of /\;1 turns out to be a primary ideal. Let this prinary
ideal belong to the prime ideal '”\n ‘then the inverse inage of p; , for the
conbined mapping /\"r — /'\_:’Lk = caq med /\;k1 is a prine ideal ,‘p* of A*
which does not depend on n » If now we associate * with the sequence
AR Ny s ANp s seo this gives the required one-to-one correspondence between

branch sequsnces and prine idcals.

=1 *
As befere let :{:f"(l’ 5 oee 5 p"(t) be the non-naxinal prine ideals of A*
and ;‘px any particular one of then. Put A = /\*/ o] * so that A is a con-

plete one-dimensicnal local ring without zero-divisors. These rings, of which
A is typical, are called the znalytic conponents of A and, if K is the
length of the X *——prinary component of the zero-ideal of /\* , then we say
‘that p is the L;ru.ltiplicity of A as analytic conponent of A . Suppose now
that A, ‘/\1 s No 5 ese is a branch sequence, then to it corresponds a prine
ideal Y7 end hence an analytic conponent A 3 further the correspondence
betwsen branch sequences and analytic components is one-to—one.
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What now is the interpretation of the nultiplicity p of the component A ?
I% is simply the terninal velue of the multiplicities m(A) , m( /\l) , mf /\2) g ooe

of the rings in the branch sequence-

Finally A has only one analytic component, nanely itself, and so its tree

of neighbcurhoods ccnsists of a single branch

,‘3\3/\19/\29““

.

SCo a3 conpere this with the original branch

/\'l /\l o /\*2y ¢ e0

The connections belween the two ars very intinate and, in particular, the proxi-
nity relations cre the sams so that /\n is proxinate to /\m if and only if
N, is proxinate to /\m ~But A, /\{ , /\y, ««o has the great advantage
that 1t always terminates, which means that

/‘\ ey = A = coe

“'n A nel T Npa2 ‘
for a sulitabls integsvr n « Now the nonent 2% which the sequence cones to an
end is jush ths nonent when we reach a ring A n of multiplicity one ; or, to
use geonstric laummags. tre term’nalion of the sequence marks the final resolution

of ths associated singularit; .
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