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It is well known that there is a close connection between the theory of algebraic
numbers and that of fields of algebraic functions of a single variable ; on the

other hand such an algebraic function field consists of the rational functions

on an irreductible curve. It follows that the theories of algebraic numbers and

algebraic curves have much in common .

Now there is a good deal known about curve singularities and at first sight it

would appear that there is nothing really comparable in number theory. The reason

for this is easy to explain. Normally when one considcrs an algebraic number field
F one deals with the ring of all algebraic integers in F and this, by its

definition, is integrally closed. The corresponding situation for a curve would
be that in which the coordinate ring was integrally closed. As is well known, such
a curve has no singularities.

It follows that to find the theory we are se6king it is natural to consider rings
of algebraic integers which are not integrally closed, in other words what are

known as orderso There were studied by Dedekind, but in his correspondence he re-
’corded his disappointment with the results h6 was able to obtain.

I do not know what Dedekind hoped to establish in this direction but it is clear

that, in a suitably nodified form, the theory of curve singularities carries over
to Dedekind orders and forms an essential part of the local theory of such sys-
tems o Indeed one can say that what was previously done for curves alone applies
in surprising detail to a vcry general kind of one-dimensional local algebra.
What I shall try to do is to sketch this g6n6ral theory which is applicable both
to curves and ord6rs as special caS6S.

The methods by which the abstract results are obtained Bust, because of the na~
ture of the situation, be different from those used by geometers. However the

patt6rn of results and th6 principal concepts are nost readily appreciated in

the geometric model and so I shall begin by giving a very rough sketch of the



theory of curve singularities as propounded by M. NOETHER.

Lst us consider a curve in the projective plane. Of course, dimension 2 has

a sp6cial attraction for geometers which is not shared by algebraists, but this

restriction will nake the reasoning easier to follow without obscuring the in-

portant features. The geometric method of analysing singularities is to apply
a transformation which has a fundamental point at the singularity. Any transfor-

mation satisfying certain general requirements will do, but of the available ones

the so-called quadratic transformations are far the simplest. Let me therefore

recall the definition and simpler properties of these transformations.

Suppose that 03A0 and T!’are two planes. We shall use (x , y , z) as homoge-

neous coordinates in TT whilG (x’ , y’ ~ z’ ) will denote coordinates in ’~’.

A standard quadratic

transfomation of ’~‘ into is obtained by napping P~x ~ y ~ z) into

P ~ (x’ ! y ~ ~ z’) wh6re

t = yz , ~‘, y’ ~ t = xy ,

it being understood that ~~~ is just a factor of proportionality. More sinply
we nay observe that the transformation and its inverse are given by

This makes it clear that the napping is birational for wo have a one-to-one

correspondence between *n t and if we first remove the sides of the triangles
of reference.. But consider the cxccptional elements. Each point of YZ is napped
into Xt and similarly, for the inverse transformation, the whole of Y’Z’ t

goes into X . Reversing out point of view, we nay say that the quadratic trans-

fornation inflates the point X into the line Y’Z’ . It is this property

which is so valuable in the study of singularities.



We shall now examine what happens at X more closely by letting P tend to

X along a line (Y= 03B3Z . Accordingly put (1 , ~ 03B3 , ~ 03B2) then

p = ( ~ ~ ~ ~ ~ ,~~) ~ (~.~, ~ ~ ~’) consequently (letting &#x26; -~0) as

along fJ Y = x Z its image P’ will tend to (0 , 03B2 , 03B3) .

Thus there is a one-to-one correspondence between the directions through X and

the points of the line Y’Z’ into which it is inflated. It is customary to

call Y’Z’ the first neighbourhood of X . In this terminology, the directions

through X correspond to the points in its first neighbourhood.

After these preliminaries 16t C be given plane curve suppose that we wish

to study a particular point on it. This can be any point, but it should be

thought of as a very complicated singularity. The procedure is then to construct

a triangle XYZ of reference so that X is the singularity in question and

neither XY nor XZ is a branch tangento Denote the distinct branch tang6nts

at X by L~ 9 L2 , o. o ~ LS

then their s directions through X will determine s points

X2 , e . , ~ Xs in the first neighbourhood of X . Further, since the curve

C pass6s through X in ths directions of L~ ~ . ~ . ~ Ls the transfom

C ~ 1 of C (when one applies the quadratic transfornation) will pass through



X. ~ ... , X~ . For this reason these latter are called the points of C

which lie in the first neighbourhood of X. Now there will be points

X.1 ’ X.. in the first neighbourhood of X. which li6 these

being defin6d, in the sane manner by means of a farther quadratic transforoation.

The X.. are known as the points of C in the second neighbourhood of X .

Additional applications of quadratic transformations lead us successively to

the points of C which belong to the third, fourth and higher neighbourhoods
of X . I think it helpa to imagine the systen of points which nakc up the

neighbourhoods of X ~ arranged in a diagran thus :

Let us call the couplets diagrao the tree of neighbourhoods, and a sequence

X , X’~~ X" ~ ... ~ in which each of X’ f ... is in the first neighbour-

hood of the point which precedes it, a branch sequence. It is known that there

are finitely many branch sequences and that they correspond, in a natural way,
with the different analytic branches of C at X . For example, if X is a 

pie point or a cusp or, quite generally, if C is analytically irreductible

at X ~ the whole tree of neighbourhoods reduc6s to a single branch

So. far wa have considered only a single curves We nust now discuss, very

briefly, the case of two curves C and r , both of which pass through X .

If C and r have a common branch tangent L1 (say) then their transfoms



C ~ J and r’ both pass through Xl CI This is expressed by saying that C and r

have the point X1 of the first neighbourhood in common. In like manner we

explain what it means for C and r’ to have COrJI10n points in the higher neigh-

bourhoods of X ; and then it is found that the total nunber of points, infini-

tely near to X ~ which lie on both C and r is always finite.

After this remark we return to the consideration of a sing16 given curve C . The

initial quadratic transfornation produces not only a curv6 C’ but also a line

namely the first neighbourhood of X, and these meet in the points

X~ ~ a c. ~ X o Ons now says that

Xl 9 ~2 ~ X y and all points infinitely near to th6D, which lie on both
C~ I and Y;Z~ are proximate to X on C ~ It is pr6cisely this notion of

proximity which dominates the more advanced theory of curve singularities. Tine

is too short to illustrate this in any detail and so I shall only mention one

single propErty~ This can be stated as follows :

The multiplicity of X (on C ) is equal to the sun of tho nultiplicities (on

C) of all the points proximate to X .

Although what I have said can give but a poor impression of the achievements

of the geometric nethod, we must pass now to thc g6neral abstract theory which it



suggests. To effect this transition, let us review what has already been said
from a more algebraic point of view () The rational functions on C ~ which are
finite and determinate at X . form a ring A ~ the so-called local ring of C at

X ~ and we know, in an intuitive way; that the structure of this ring reflects the
nature of the singularity at The quadratic transformation replaces C by C’ I

and X by the points X ~ ~ ~ X . Let A . be the local ring of C’ I

at X. then? since the transformation is birational, A and A. have the

sane quotient field. Clearly the clue to the problem is to find how to derive

~2 ~ *** ~ ~s by a process which only uses the ring structure of A . If

we can do this then we may expect that the process will also be applicable to

situations not found in geometry and in this way we shall arrive at a more gene-
ral theoryo To be brief, I shall begin immadiately to describe the abstract

theory which emerges when one follows out this idea.

From here on, A will denote a completely arbitrary one-dimensional local ring,
with maximal ideal and residue field A = K ft If now (~ c ~ then we

say that / is superficial of degree s if = ~ ~ ~s * for all large values

of y . The superficial elements of degree zero are the units and there always
exist superficial elements of degree s provided that s is sufficiently

large. Observe that if 03B1 is superficial of degree s and 03B2 is superficial of

degree t then is superficial of degree s + t ; hence the set of superficial
elements is closed under multiplication. Consider next the set of formal frac-

tions a/c , where a E and c is superficial of degree s. Here s is

a freely variable degree of superficiality. If and are two such

fractions~ we ~-2~2 if ~2 ~1 ~ ~l a2 for some superficial
element c . This relation .% is an equivalence relation. Denote by E2014D the

equivalence class to which ( belongs, then these classes can be made into a

ring by salting

~ is called the first neighbourhood ring of A ~ Observe that the napping
a ~ [a T] is a ring-homomorphism A ~ R o This is a fundamental napping and

it turns out that A an isomorphism if and only if A is regular or,
if you prefer it, a valuation ringo (This corresponds to the geometric situation
when X is a simple point of C )o



Now is found to be a semi-local ring, which implies that it has only a
finite number of maximal ideals. Denote by A’~**.~ A" the rings of

fractions of ~~ with respect to its maximal ideals. These rings, which are all
one-dimensional local rings, will be said to be in the first neighbourhood of A

(They correspond precisely to the local rings of the curve C’ at the points

X2 , **’ ~ ~s in the first neighbourhood of X ). Let A~ be one of the

local rings in the first neighbourhood of A ~ then we can repeat the construction
with /B. and so obtain rings in the first neighbourhood of A. which will

be said to b6 in th6 second neighbourhood of A . Further repetitions lead, of

course, to rings in the third, fourth and higher neighbourhoods of A giving a

system of ne-dimensional local rings which we call the tree of neighbourhoods of

A . This tree is made up of branch sequences !B 0:: !B, ~1 ~ ~? ~ *** ~ where

is in the first neighbourhood of A 
r 

just as in the case of curves,
it is not difficult to show that the number of different branch sequences is

finite.

Let be in the first neighbourhood of A then /B is a ring of fractions

of  . We have therefore a canonical napping  ~ A. which wo can combine

with the original mapping ^ ~  to obtain a homonorphism A ~ A. , Denote
by the ideal generated by the image of ~1 in A~ then, and this is
a fundamental result, A.T’~ is a principal ideal~ that is to say it can be

generated by a single element. It is this fact which gives ris6 to the theory
of proximity relations.

As an illustration, let A~A.~A~~... bea branch sequence and

let j~ be the ideal of .A . Then, as already observed,
principal ideal, say

now says that A 
p 

is proximate 0 if

where, it is to be unterstood, the left hand side is to be computed in ~p .

(This means that we first cubed ~ 
r 

(l in ~B 
p 

byneansofthe

mappings ^ r ~ ^r+1 ~ ... ~ ^p ) . This definition opens the way to gene-
ralisations of results well known in the theory of curves. For instance, one can
show that the multiplicity of /B is equal to th6 properly counted, of th6



multiplicities of the local rings proximate to it. I should say that the 

city of a local ring is an abstract concept, due to Professor Samuel, which corres-
ponds to the multiplicity of a point on an algebraic variety. The definition is
a little conplicated so I shall not go into details.

In my earlier remarks, I recalled that, for carves, the different branch

sequences correspond to the different analytic branches as defined by means of

power-series. By way of conclusion;, therefore I indicate how this fact

becomes incorporated in the new theory. The powers of the maximal ideal of ^
define a metric topology on the ringo Me can therefore form the conpletion ^*
of A and too, is a one-dimensional local ring. Let

be the non-maximal prime ideals of ^* then I assert that there is. a natural

one-to-one correspondence between the branch sequences A~ A. ~ A? ~ ..~ and

these prime ideals. The correspondence works in this way. The first neighbour-
hood ring of A’" is found to be the completion of the first neighbourhood ring of
A o From this it follows that to each branch sequence ^, ^1 , ^2 , ...

there corresponds a branch sequence A~ ~ /B~ A~ ~ ... and conversely. In
other terms, the trees of neighbourhoods of and /B" have the same structure.

Suppose now that a particular branch sequence ~;Ai~A?~*’c is given. Let

^* , ^*1 , ^*2 , ... be the corresponding sequence then, when n is large

enough, the zero ideal of turns out to be a primary ideals Let this primary
ideal belong to the prime ideal p*n then the inverse image of p*n , for the
combined mapping ^* ~ ^*1 ~ ... ~ ^*n is a prime ideal of A*
which does not depend on n ~ If now we associate ~0 

* 
with the sequence

A~ ~1~~2~"" this gives the required one-to-one correspondence between
branch sequences and prime ideals.

As before let p*(1) , ... p*(t) be the non-maximal prine ideals of ^*
and 

* 
particular one of then~ Put == /B~/ p ~ so that A is a con- 

’

plete one-dimensional local ring without zero-divisors. These rings, of which
A is typical, are called the analytic components of A and, if  is the

length of the ? ~-primary component of zero-ideal of /B~ ~ then we say
that ~ is the multiplicity of A as analytic component of A * Suppose now
that A~ ~ .~ is a branch sequence then to it corresponds a prime
ideal p 

" 

and hence an analytic component A ~ further the correspondence
between branch sequences and analytic components is one-to-one.
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What now is th6 interpretation of the nultiplicity p of the component A ?

It is simply the te«4.nal value of the multiplicities m( m( ̂ 1) , m( ̂ 2) , ...
of the ring3 in the branch sequence.

Finally A has only one analytic component? namely itself, and so its tree
of neighbourhoods consists of a single branch

this vith the original branch

The connections between the two are very intimate and, in particular, th6 proxi-
nity relations are the sane so that /B 

n 
is proxinate to A 

n 
if and only if

. An is proximate to ^m But /Bp ^1 , ^2 , ... has th6 great advantage
that it always terminates, which means that

for a suitable integer n . Now the moment at which the sequence cones to an

end is the moment when we reach a ring of multiplicity on6 ; or, to
use the of the sequence narks the final resolution

of the associated 
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