SÉMINAIRE DUBREIL. ALGÈBRE ET THÉORIE DES NOMBRES

R. DESCOMBES

Sur un problème d'approximation diophantienne non homogène

Séminaire Dubreil. Algèbre et théorie des nombres, tome 8 (1954-1955), exp. nº 1, p. 1-11 http://www.numdam.org/item?id=SD_1954-1955_8_A1_0

© Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1954-1955, tous droits réservés.

L'accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Faculté des Sciences de Paris

-:-:-:-

Séminaire P. DUBREIL (ALGEBRE et THÉORIE DES NOMBRES) Année 1954/55

-!-!-!-

Exposé nº 1

SUR UN PROBLÈME D'APPROXIMATION DIOPHANTIENNE NON HOMOGÈNE.

(Exposé de R. DESCOMBES, le 8 novembre 1954)

1.- Introduction : Enoncé du problème.

Dans tout cet exposé, ξ désigne un nombre <u>irrationnel</u> et η un nombre réel arbitrairement choisis tels que l'équation $v\xi-u*\eta=0$ n'ait aucune solution en u, v entiers ordinaires.

L'étude des petites valeurs de la forme $v\xi - u + \eta$ a été abordée par Minkowski qui a établi (Ann. Fc. Norm. Sup., 1893) que, pour tout choix de ξ et η (avec les restrictions ci-dessus, évidemment destinées à écarter les cas triviaux), on a

$$\frac{\lim_{u,v} |v(v\xi - u + \eta)| \leq \frac{1}{4} \quad (u, v \text{ entiers quelconques, } v \neq 0).$$

Grace a montré par exemple (Proc. London Math. Soc. 1918) que la valeur $\frac{1}{4}$ est atteinte pour certains couples ξ , η .

Or on a

 $\frac{\lim |v(v\xi-u+\eta)|}{\lim v|v\xi-u+\eta|} = \inf[\frac{\lim v|v\xi-u+\eta|}{\lim v|v\xi-u-\eta|}]$ où les limites infé rieures sont prises, au premier membre, pour tous les couples d'entiers u, v avec $v\neq 0$ et au second membre pour tous les couples u, v avec v>0. Cette remarque évidente introduit le problème dont nous allons nous occuper : celui de l'étude des petites valeurs de la forme $v\xi-u+\eta$ lorsque u prend toutes les valeurs entières et v toutes les valeurs entières positives. Ce problème n'est identique à celui de Minkowski que dans le cas où $\eta \equiv \frac{1}{2}$ (mod. 1).

2.- Indication des résultats.

Posons

(2.1)
$$K(\xi,\eta) = \lim_{u \to u} v | v \xi - u + \eta |$$
 (u, v entiers quelconques, $v > 0$), et (2.2) $K = \max_{u \to u} k(\xi,\eta)$

où le maximum est pris pour tous les irrationnels ξ et tous les réels η avec $\,v\,\xi-\,u\,+\,\eta\,\neq\,0\,$ pour tout couple d'entiers $\,u$, v .

La recherche de la constante K, jouant pour notre problème le rôle de la constante $\frac{1}{4}$ pour celui de Minkowski, a donné lieu aux encadrements suivants :

$$\frac{3}{32} \le K$$
 (Prasad, Proc. London Math. Soc., 1951) $K \le \frac{1}{\sqrt{5}} = 0,447...$ (Khintchine, Math. Ann., 1935) $0,352... = \frac{37}{10\sqrt{110}} \le K \le \frac{2}{5} = 0,4$ (Poitou et Descombes C.R. Acad. Sc., 1952)

Enfin Cassels, dans un article (Math. Ann., 1954) qui est la source principale de cet exposé, vient de montrer que

$$K = \frac{27}{28\sqrt{7}} = 0,3644$$

et que ce maximum est "isolé", c'est-à-dire que

$$K(\xi, \eta) < K$$
 entraine $k(\xi, \eta) \leqslant \frac{4}{11} = 0.3636...$

3.- Indication de la méthode.

La méthode utilisée par Cassels consiste essentiellement à choisir parmi l'ensemble de tous les couples d'entiers u, v (v>0) deux suites récurrentes de couples u_n , v_n et u_n^i , v_n^i telles que

(3.1)
$$k(\xi,\eta) = \lim_{n \to +\infty} [v_n | v_n \xi - u_n + \eta], v_n' | v_n' \xi - u_n' + \eta].$$

En outre, pour parvenir à un calcul commode des quantités entre crochets on rattache u_n , v_n et u_n' , v_n' à la réduite p_n/q_n de rang n dans le développement de ξ en fraction continue. Rappelons donc brièvement les résultats de cette dernière théorie, afin de préciser les notations.

4.- Rappel de la théorie des fractions continues.

Pour alléger le langage, nous supposerons dans toute la suite $\xi>0$, ce qui ne restreint pas la généralité.

Soit
$$\left\{\frac{p_n}{q_n}\right\}$$
 $(n = -1, 0, 1, 2, ...)$ la suite des réduites de ξ , rangées

dans l'ordre des $q_n \xi - p_n$ décroissants, en commençant par la réduite préliminaire $\frac{p_{-1}}{q_{-1}} = \frac{1}{0}$, suivie de $\frac{p_0}{q_0} = \frac{1}{1}$, où $a_0 = [\xi]$ (partie entière de ξ). La propriété fondamentale des réduites s'exprime par :

(P) $|q\xi - p| < |q_n\xi - p_n|$ entraı̂ne $|q| > q_{n+1}$ sauf si les entiers p et q sont tous deux nuls.

$$(4.1) \qquad \qquad \underline{\lim} |q(q\xi - p)| = \underline{\lim}_{n \to +\infty} |q_n(q_n\xi - p_n)|$$

où la limite inférieure du premier membre est prise pour tous les couples d'entiers p , q $(q \neq 0)$.

Posant $\xi_n = q_n \xi - p_n$, on a $\xi_n > 0$ pour n pair, $\xi_n < 0$ pour n impair, et

(4.2)
$$\varepsilon_n q_{n-1} - \varepsilon_{n-1} q_n = p_{n-1} q_n - p_n q_{n-1} = (-1)^m$$
: de plus

$$(4.3) p_{n+1} = a_{n+1} p_n + p_{n-1} q_{n+1} = a_{n+1} q_n + q_{n-1}$$

où les entiers a_n , tous strictement positifs pour $n \gg 1$, sont, avec a_0 , les quotients incomplets de ξ , ce qu'on note

$$(4.4) \qquad \xi = (a_0 \ a_1 \ a_2 \ \cdots \ a_n \ \cdots) \ .$$

En introduisant enfin les quantités

(4.5)
$$x_n = \frac{\xi_{n-2}}{\xi_{n-1}} = -\frac{q_{n-2}\xi - p_{n-2}}{q_{n-1}\xi - p_{n-1}}, \quad y_n = -\frac{q_{n-2}}{q_{n-1}} \quad (n \ge 1),$$

on a

(4.6)
$$x_n > 1$$
 , $-1 < y_n < 0$ (sauf $y_1 = 0$, et, peut-être, $y_2 = -1$) et

(4.7)
$$x_{n+1} = \frac{1}{x_n - a_n}$$
, $y_{n+1} = \frac{1}{y_n - a_n}$, $a_n = [x_n]$

d'où, avec la notation (4.4):

(4.8)
$$x_n = (a_n a_{n+1} ...)$$
 $(n \ge 1)$

(4.9)
$$y_n = - (0 \ a_{n-1} \ a_{n-2} \dots a_1)$$
 $(n \ge 2)$

et, d'après (4.2):

(4.10)
$$\frac{(-1)^n}{q_n \xi_n} = x_{n+1} - y_{n+1}$$

d'où

(4.11)
$$\lim_{n} |q(q\xi - p)| = \frac{1}{\lim_{n} (x_n - y_n)}$$
.

5.- Construction d'un algorithme.

Ces résultats étant rappelés, la suite $\{u_n, v_n\}$ annoncée au paragraphe 3 sera caractérisée par le théorème suivant, après avoir posé par définition $\rho_n = v_n \xi - u_n + \gamma$:

Théorème 1. Pour tout $n \geqslant 0$, il existe un couple d'entiers u_n , v_n et un seul tel que : $(-\xi_{n-1} < \rho_n < 0 \text{ si } n \text{ est impai}$

seul tel que : ou bien :
$$(A_n) \qquad 0 \leqslant v_n < q_n \quad \text{avec} \begin{cases} -\xi_{n-1} < \beta_n < 0 \quad \text{si n est impair} \\ 0 < \beta_n < -\xi_{n-1} \quad \text{si n est pair} \end{cases}$$

 $(B_n) \quad q_n \leqslant v_n < q_n + q_{n-1} \quad \text{avec} \begin{cases} \xi_n < \rho_n < 0 \quad \text{si n est impair} \\ 0 < \rho_n < \xi_n \quad \text{si n est pair} \end{cases}$

 $\underline{\text{Unicit\'e de}} \quad \textbf{u}_{\text{n}} \text{ , } \textbf{v}_{\text{n}} \text{ . D\'emontrons-la dans le cas } \text{ n} \text{ impair, pour fixer les}$ idées.

- S'il existait deux couples solutions de An, on en déduirait par différence un couple u , v satisfaisant aux conditions

$$0 \le v < q_n$$
 $|v\xi - u| < \epsilon_{n-1}$

qui contredisent (P) sauf pour u = v = 0.

- S'il existait deux couples solutions de B_n, on en déduirait par différence un couple satisfaisant aux conditions

$$0 \le v < q_{n-1}$$
 $\{v \in u \} < \{\varepsilon_n\}$

qui contredisent (P) sauf pour u = v = 0.

- S'il existait un couple solution de A_n et un couple solution de B_n , on en déduirait de même un couple u , v satisfaisant aux conditions

$$0 \le v < q_n + q_{n-1}$$
 $\varepsilon_n < v\xi - u < \varepsilon_{n-1}$

qui, compte tenu de l'alternance du signe de $\epsilon_{\rm n}$, contredisent aussi sauf pour u = v = 0.

Existence de u, , v, . On la prouve par récurrence.

Pour n = 0, les conditions imposées à v_0 par B_0 sont contradictoires. Au contraire A_0 admet la solution unique $v_0 = 0$, $u_0 = [\gamma]$.

Supposons que u, v, existe;

- Si on a B_n , on vérifie que le couple

(5.1)
$$u_{n+1} = u_n - q_n$$
, $v_{n+1} = v_n - q_n$

est une solution de \mathbf{A}_{n+1} , car $\mathbf{q}_n \leqslant \mathbf{v}_n < \mathbf{q}_n + \mathbf{q}_{n-1}$

 $0 \le v_{n+1} < q_{n-1} < q_{n+1}$.

- Si on a A_n , posons $b_{n+1} = \left[x_{n+1} - \frac{\rho_n}{\xi_n} \right]$. Comme ρ_n a le signe de ξ_n avec $|P_n| < |E_{n-1}|$, on a $0 < \frac{r_n}{E_n} < x_{n+1}$ d'où $0 \le b_{n+1} \le a_{n+1}$; on vérifie alors que le couple

(5.2) $u_{n+1} = u_n + b_{n+1} p_n + p_{n-1}$, $v_{n+1} = v_n + b_{n+1} q_n + q_{n-1}$ est une solution de A_{n+1} si $b_{n+1} \neq a_{n+1}$ et de B_{n+1} si $b_{n+1} = a_{n+1}$, ce qui achève la démonstration du théorème 1.

Remarque. Le cas B_n n'intervient donc qu'encadré par A_{n-1} et A_{n+1} et il implique

 $\mathbf{u}_n = \mathbf{u}_{n-1} + \mathbf{a}_n \ \mathbf{p}_{n-1} + \mathbf{p}_{n-2} = \mathbf{u}_{n-1} + \mathbf{p}_n \quad , \quad \mathbf{v}_n = \mathbf{v}_{n-1} + \mathbf{q}_n \\ \mathbf{d}^{\bullet} \mathbf{o} \mathbf{u}$

(5.3)
$$u_{n+1} = u_n - p_n = u_{n-1}$$
, $v_{n+1} = v_n - q_n = v_{n-1}$

et, d'après (5.3) et la définition de A_{n+1}

$$(5.4) 0 < -\frac{\rho_{n+1}}{\varepsilon_n} = -\frac{\rho_{n-1}}{\varepsilon_n} < 1$$

d'où l'on tire encore

$$0 < \frac{\ell_{n-1}}{\epsilon_{n-1}} < 1$$
 et $0 < \frac{\ell_{n+1} + \epsilon_n}{\epsilon_n} = \frac{\ell_n}{\epsilon_n} < 1$.

L'inégalité (5.4) montre qu'on ne peut pas avoir une alternance indéfinie de cas A et de cas B puisque $\ell_k \to 0$ avec 1/k; comme B implique $v_{n-1} = v_{n+1}$ et que A implique $v_{n+1} > v_n$, il en résulte que

(5.5)
$$\lim_{n \to +\infty} v_n = + \infty .$$

Formules de récurrence. En posant

(5.6)
$$t_{n+1} = \frac{v_n}{q_n}$$
, $z_{n+1} = \frac{\rho_n}{\epsilon_n}$ (d'où $0 < z_{n+1} < x_{n+1}$)

on peut traduire ces résultats par les formules de récurrence :

- Si
$$A_{n-1}$$
 (c'est-à-dire $0 \le t_n < 1$)

(5.7)
$$\frac{z_{n+1}}{z_{n+1}} = z_n - z_n - b_n$$
, $\frac{t_{n+1}}{y_{n+1}} = y_n - t_n - b_n$,

$$0 \leqslant b_n = [x_n - z_n] \leqslant a_n$$

- Si B_{n-1} (c'est-à-dire $1 \leqslant t_n < 1 - y_n$, ou encore $b_{n-1} = a_{n-1}$

(5.8)
$$\frac{z_{n+1}}{x_{n+1}} = 1 - z_n$$
, $\frac{t_{n+1}}{y_{n+1}} = 1 - t_n$, $z_{n-1} < 1$, $z_n < 1$

avec:
$$z_1 = \frac{\eta - [\eta]}{\xi - [\xi]}$$
 et $t_1 = 0$

6.- Propriétés d'approximation de l'algorithme.

Comparons l'ensemble des couples d'entiers u , v $\ (v>0)$ à l'ensemble des couples u_n , v_n .

Etant donnés un couple d'entiers u , v et un indice $n \geqslant 0$ quelconques, on peut, en vertu de $p_{n-1}q_n - p_nq_{n-1} = 1$, définir les nombres q_n , p_n , q_n , $q_$

(6.1)
$$u_{n} - \eta = \alpha_{n} p_{n-1} + \beta_{n} p_{n} \qquad u - \eta = \alpha_{n-1} + \beta_{n} p_{n}$$

$$v_{n} = \alpha_{n} q_{n-1} + \beta_{n} q_{n} \qquad v = \alpha_{n-1} + \beta_{n} q_{n}$$

et, puisque u_n , v_n , u , v sont entiers, on obtient par ces formules tous les couples d'entiers u , v en donnant à \rtimes , β tous les couples de valeurs définis par

$$(6.2) \qquad \alpha \equiv \alpha \qquad \beta \equiv \beta \qquad \text{(mod. 1)}.$$

Posons

$$\alpha - \alpha_n = r$$
 $\beta - \beta_n = s$ (r, s entiers)

et étudions pour n fixé les couples u , v satisfaisant à

$$q_{n} \leqslant v < q_{n+1} .$$

Si on est dans le cas A_n , c'est-à-dire si $0 \le v_n < q_n$, (6.3) entraı̂ne $0 < r \cdot q_{n-1} + s \cdot q_n < q_{n+1}$

c'est-à-dire d'après (4.5)

$$(6.4) 0 < s - r y_{n+1} < a_{n+1} - y_{n+1}$$

qui implique que r et s ne peuvent pas être tous deux négatifs ou nuls.

Si $v_n = v_0 = 0$ (ce qui n'arrive d'après (5.5) que pour un nombre fini de valeurs de n), on a évidemment $v|v\xi - u + \eta \rangle v_n \rangle \rho_n$. En écartant ce cas trivial, on a d'après (6.1), (4.5) et (5.6):

$$\frac{v|v\xi - u + \eta|}{v_n|\rho_n|} = \left(1 + \frac{s - r y_{n+1}}{t_{n+1}}\right) \left| \frac{r x_{n+1} - s}{z_{n+1}} - 1 \right|.$$

Le premier terme du second membre est supérieur à 1 d'après (6.4) et $t_{n+1} < 1$; examinons le second terme.

- Si r est négatif ou nul et s positif, le second terme est supérieur à 1 .

- Si $r \ge 2$, les inégalités $x_{n+1} > z_{n+1}$ et (6.4) entraîment (en omettant l'indice n+1 pour x , y , a et z):

$$\left| \frac{\mathbf{r} \times -\mathbf{s}}{\mathbf{z}} - 1 \right| = \frac{\mathbf{r} \times -\mathbf{s}}{\mathbf{z}} - 1 > \frac{\mathbf{r}(\mathbf{x} - \mathbf{y}) - (\mathbf{a} - \mathbf{y})}{\mathbf{z}} - 1 > (\mathbf{r} - 1 \times -\mathbf{y} - 1)$$

qui est supérieur à 1 dès que $r \gg 3$.

En résumé, les inégalités

$$q_n \le v < q_{n+1}$$
 $v | v \xi - u + \eta | \le v_n | r_n |$

ne peuvent être satisfaites simultanément que pour r = 1 ou 2.

- Si r = 1, l'expression

$$\frac{v | v - u + \eta}{v_n | n|} = (1 + \frac{s - y_{n+1}}{z_{n+1}}) \frac{x_{n+1} - s}{z_{n+1}} - 1$$

prend pour les entiers s définis par (6.4) c'est-à-dire par $0 < s < a_{n+1}$ une valeur au moins égale à la plus petite de celles qui correspondent à s = 0, $s = b_{n+1}$ et $s = b_{n+1} + 1$ (car $x_{n+1} - s - z_{n+1}$ change de signe quand on passe de $s = b_{n+1}$ à $s = b_{n+1} + 1$). Or :

- pour r = 1 et $s = b_{n+1}$ on a d'après (5.2)

$$u = u_n + b_{n+1} p_n + p_{n-1} = u_{n+1}$$
 $v = v_{n+1}$;

- pour r = 1 et s = 0, nous poserons

(6.5)
$$u = u_n + p_{n-1} = u_n^{\dagger}$$
, $v = v_n + q_{n-1} = v_n^{\dagger}$, $p_n^{\dagger} = v_n^{\dagger} \xi - u_n^{\dagger} + \eta$

- pour r = 1 et $s = b_{n+1} + 1$, on a donc, d'après (6.5)

$$u = u_{n+1}^{\dagger} \qquad v = v_{n+1}^{\dagger}$$

- Si r=2, enfin, des calculs analogues permettent de montrer que les valeurs entières s définies par (6.4) correspondent à des valeurs de $v|v\xi-u+\eta|$ supérieures au plus petit des deux produits $v_n(\rho_n)$ et $v_{n+1}|\rho_{n+1}|$.

En résumé, les inégalités $0 \le v_n < q_n \pmod{n}$ et $q_n \le v < q_{n+1}$ (6.3) entraînent, en tenant compte de la définition (6.5) :

$$v|v\xi-u+\eta| \gg \inf[v_n|f_n|, v_n'|f_n'], v_{n+1}|f_{n+1}|, v_{n+1}'|f_{n+1}']$$

Si on est dans le cas B_n , c'est-à-dire si $q_n \leqslant v_n < q_n + q_{n-1}$, avec $v_{n+1} = v_{n-1} = v_n - q_n$, des comparaisons analogues à celles qui viennent d'être faites pour le cas A_n montrent que (6.3) entraîne

$$v|v\xi - u + \uparrow \rangle \inf[v_n|\rho_n|, v_{n-1}|\rho_{n-1}|]$$
.

En rassemblant tous ces résultats, on peut donc énoncer le théorème suivant, analogue à la propriété (P) des réduites :

Théorème 2. A tout couple d'entiers u , v (v > 0) , on peut associer un indice $n \ge 0$ tel que

$$v(v\xi - u + \eta) \ge \inf[v_n | \rho_n|, v_n' | \rho_n']$$
.

Comme, d'après (5.5) et (6.5) on a $\lim_{n\to +\infty} v_n = \lim_{n\to +\infty} v_n^{\dagger} = +\infty$,

il en résulte, comme il a été annoncé par (3.1), le

Théorème 3.

$$K(\xi,\eta) = \frac{\lim_{n \to +\infty} [v_n | \rho_n]}{v_n | \rho_n|}, v_n | \rho_n^*|$$

7.- Calcul de $v_n | \rho_n |$ et de $v_n' | \rho_n' |$.

On a, d'après les définitions (4.5), (5.6) et (6.5) et la formule (4.10):

$$v_{n} \mid \rho_{n} \mid = t_{n+1} z_{n+1} q_{n} \mid \epsilon_{n} \mid = \frac{t_{n+1} z_{n+1}}{x_{n+1} - y_{n+1}}$$

$$v_{n}^{\prime} \mid \rho_{n}^{\prime} \mid = (v_{n} + q_{n-1}) \mid \rho_{n} + \varepsilon_{n-1} \mid = \frac{(t_{n+1} - y_{n+1})(x_{n+1} - z_{n+1})}{x_{n+1} - y_{n+1}} .$$

D'après le théorème 3, ces formules permettent donc le calcul de $k(\xi,\eta)$ en utilisant les relations de récurrence (5.7) et (5.8).

8.- Exclusion de B pour $k(\xi,\eta)$ assez grand.

Supposons qu'au rang n on soit dans le cas B $_n$, c'est-à-dire que $1 \leqslant t_{n+1} < 1 - y_{n+1}$. On a alors d'après (5.8) $0 < z_{n+1} < 1$ et, d'après (5.1)

$$\begin{aligned} \mathbf{v}_{n+1} \mid \mathbf{p}_{n+1} &= (\mathbf{v}_n - \mathbf{q}_n) \mid \mathbf{p}_n - \mathbf{\varepsilon}_n \\ &= \frac{(\mathbf{t}_{n+1} - 1)(1 - \mathbf{z}_{n+1})\mathbf{q}_n \mid \mathbf{\varepsilon}_n \\ &= \frac{(\mathbf{t}_{n+1} - 1)(1 - \mathbf{z}_{n+1})}{\mathbf{x}_{n+1} - \mathbf{y}_{n+1}} \end{aligned}$$

En sous-entendant l'indice n+1 pour x, y, z et t, les deux fonctions de z, toutes deux positives

$$v_n \mid \rho_n \mid = \frac{t z}{x - y}$$
 et $v_{n+1} \mid \rho_{n+1} \mid = \frac{(t - 1)(1 - z)}{x - y}$

sont, pour $0 \le z \le 1$, l'une croissante, l'autre décroissante, la première s'annulant pour z=0 et la seconde pour z=1; la plus petite d'entre elles est donc au plus égale, quel que soit z dans cet intervalle, à la valeur commune unique qu'elles prennent pour $z=\frac{t-1}{2t-1}$ et qui vaut $\frac{t(t-1)}{(x-y)(2t-1)}$.

Cette dernière fonction de t est croissante pour $1 \leqslant t \leqslant 1-y$; donc :

$$\frac{t(t-1)}{(x-y)(2t-1)} \leqslant \frac{-y(1-y)}{(x-y)(1-2y)} < \frac{-y}{1-2y} < \frac{1}{3}$$

puisque x > 1 et y > -1.

Ainsi, d'après le théorème 3, la réalisation du cas B_n pour une infinité de valeurs de n implique $k(\xi,\eta) \leq \frac{1}{3}$; d'après les encadrements donnés au paragraphe 2, $k(\xi,\eta)$ est alors assez éloigné de K.

9.- Caractérisation de $k(\xi,\eta)$ par les suites $\{a_n\}$, $\{b_n\}$.

Les expressions (4.8) et (4.9) de x_n et y_n montrent que les valeurs d'accumulation de x_n-y_n lorsque $n \Rightarrow +\infty$ me sont pas influencées par les p premiers quotients incomplets, quel que soit p arbitrairement fixé. De même, si, pour n > p, on a toujours A_n , comme les produits $x_{n+1} \cdots x_{n+k}$ et $y_n y_{n-1} \cdots y_{p+1}$ tendent respectivement vers $+\infty$ et 0 avec k et 1/n, les formules déduites de (5.7)

$$z_{n} = x_{n} - b_{n} - \frac{x_{n+1} - b_{n+1}}{x_{n+1}} + \frac{x_{n+2} - b_{n+2}}{x_{n+1} + x_{n+2}} - \dots + (-1)^{k} \frac{x_{n+k} - b_{n+k} - \frac{z_{n+k+1}}{x_{n+k}}}{x_{n+1} \cdot \cdot \cdot x_{n+k}}$$

$$t_{n} = y_{n}(y_{n-1} - b_{n-1}) - y_{n} y_{n-1}(y_{n-2} - b_{n-2}) + \dots + (-1)^{n-p+1} y_{n} \cdot \cdot \cdot$$

$$\dots y_{p+1} (y_{p} - b_{p} - t_{p})$$

montrent que les valeurs d'accumulation de z_n et t_n ne sont pas influencées par les p premières valeurs de a_n et b_n .

Puisque $k(\xi,\eta) > \frac{1}{3}$ implique qu'on a A_n pour tout n assez grand, il en résulte que dans cette hypothèse $k(\xi,\eta)$ est entièrement déterminé par la donnée, à partir d'un certain rang, de deux suites d'entiers positifs a_n et b_n avec $a_n > b_n \geqslant 0$ et

$$x_{n+1} = \frac{1}{x_n - a_n} \qquad y_{n+1} = \frac{1}{y_n - a_n} \qquad a_n = [x_n]$$

$$\frac{z_{n+1}}{x_{n+1}} = x_n - z_n - b_n \qquad \frac{t_{n+1}}{y_{n+1}} = y_n - t_n - b_n \qquad b_n = [x_n - z_n]$$

$$0 < z_n < x_n \qquad -1 < y_n < 0 < t_n < 1$$

et d'une manière analogue à (4.11) :

$$k(\xi,\eta) = \lim_{n \to +\infty} \left[\frac{t_n z_n}{x_n - y_n} , \frac{(t_n - y_n)(x_n - z_n)}{x_n - y_n} \right]$$

10.- Conséquences : Détermination de K.

En comparant, à l'aide des formules du paragraphe 7 et des formules de récurrence (5.7), les valeurs des produits $v_n | r_n |$, $v_n^* | r_n^* |$ relatifs à des

indices n différents entre eux de quelques unités, on est conduit à des calculs plus compliqués mais analogues à celui par lequel nous avons établi que $k(\xi,\eta) > \frac{1}{3}$ est, à partir d'un certain rang, incompatible avec B . C'est par cette voie que Cassels prouve que l'hypothèse $k(\xi,\eta) > \frac{4}{11}$ exige que les suites des a et des b soient exclusivement constituées, à l'exception d'un nombre fini de termes, par la répétition indéfinie de la période suivante, désignée par S:

S
$$\begin{cases} a_n = 4 & , & a_{n+1} = a_{n+2} = a_{n+3} = 1 \\ b_n = 2 & , & b_{n+1} = b_{n+2} = b_{n+3} = 0 \end{cases}$$

En fait, les nombres ξ et η correspondant aux développements de ce type sont ceux de la forme

$$\xi = \frac{A\sqrt{7} + B}{C\sqrt{7} + D} \qquad \eta = \frac{-3\sqrt{7} - 7 + E\sqrt{7} + F}{14(C\sqrt{7} + D)}$$

où A, B, C, D sont des entiers arbitraires tels que $AD - BC = \frac{+}{2}1$. Parmi eux se trouvent les couples notables

$$\xi = \sqrt{7}$$
 , $\eta = -\frac{3\sqrt{7}}{14} - \frac{1}{2}$ et $\xi = \frac{7 - \sqrt{7}}{14}$, $\eta = -\frac{1}{14}$.

Pour tous ces couples on a $k(\xi,\eta) = \frac{27}{28\sqrt{7}} > \frac{2}{11}$; par suite:

Théorème 4.

$$K = \frac{27}{28\sqrt{7}} = 0,3644...$$

11.- Autres valeurs remarquables de $k(\xi,\eta)$.

La valeur de $k(\xi,\eta)$ irmédiatement inférieure à K (ou la borne supérieure de ces valeurs), donc inférieure à $\frac{4}{11}$, n'est pas connue. Citons cependant la valeur $\frac{37}{10\sqrt{110}}$ = 0,3528... qui correspond aux couples ξ , η

dont le développement par l'algorithme précédent est exclusivement constitué, à partir d'un certain rang, par la répétition indéfinie de la période

T $\begin{cases} a = 4 & 1 & 1 & 1 & 1 & 1 \\ b = 2 & 0 & 0 & 0 & 0 & 0 \end{cases}$ et aussi la valeur $\frac{23 + 8\sqrt{7}}{126} = 0,3505...$ qui est une valeur d'accumulation pour l'ensemble des $k(\xi,\eta)$ et qui correspond aux couples ξ , η dont le développement est constitué à partir d'un certain rang par les groupements S et T de la façon suivante :

...
$$T$$
 S ... S T S T S T S ... S T S T S T S T S T S

où les entiers $m_{\mathbf{k}}$ augmentent indéfiniment avec \mathbf{k} .

On peut se demander si ces deux valeurs sont respectivement la valeur immédiatement inféfieure à K et la plus petite valeur d'accumulation des $k(\xi,\eta)$. L'algorithme qui vieht d'être décrit pourrait permettre d'en décider. Au prix de quelques modifications, il pourrait aussi être utilisé pour l'étude diophantienne de la forme $v\xi-u+\eta$, sans la restriction v>0.