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SOME WONDERFUL FORMULAE ...

FOOTNOTES TO APERY’S PROOF OF THE IRRATIONALITY OF 03B6(3)

by Alfred J. van der POORTEN (*)
[Macquarie University]

Seminaire DELANGE-PISOT-POITOU
(Théorie des nombres)
20e annee, 1978/79, n° 29, 7 p. 21 mai 1979

1. In his notorious lecture at Marseille APERY reminded his audience of

two curious formulae :

These expressions can be proved in a quite straightforward way. In fact, writing

and the formulae readily follow. For details see for example my report on Ap4ry’s
proof [5] or the companion lecture to the present one [6]. There remains the ques-
tion of whether the formulae (1), (2) are isolated curiosities. Numerical experi-
mentation quickly reveals that

with C = 2, ~ 176470 588 ... and indeed

(*) Texte reçu en octobre 1979.
Alfred J. van der POORTEN, School of Mathematics and Physics, Macquarie Universi-

ty, NORTH RYDE, N. S. W. 2113 (Australie).



whilst in no other case does one obtain a constant that is so apparently a rational

number.

Thanks to SHANKS I found in COMTET [3] at p. 89 (only in the English translation,
not the French original!) an exercise : show that

No hint of a proof seemed to be provided. However it is well known that

so the first three formulae follow easily. Moreover one has equally easily the com-

panion formulae

Thus we see that

From the preface to LEWIN’s book [4], I knew that the definite integral I has the
value

thereby verifying the experimental result (3).

2. Underlying all the results mentioned there appear the so-called polyloga-
rithms, long neglected, vide LEWIN [4], but now enjoying something of a revival.
One defines the dilogarithm by

and the higher polylogarithms by



The subject is a vast compendium of wonderful formulae 9 for an introduction see

my notes ~~~, Here I mention only the following relevant examples :

Integrating

by parts, one readily discovers that in particular

Furthermore for 0 $ 9  TT

which yields the real part, respectively the imaginary part, of the integral on the
left according as n is even, respectively odd (of course this is just the obser-
vation that all the Bernoulli numbers other than B. = - " . vanish).

On the other hand

and the right hand side yields linear combinations of the so-called logsine inte-

grals

were we to choose 6 =-7- then cleverly = 1 - e~ and we obtain inter alia on

taking appropriate real or imaginary parts

From these results, we can disentangle the truly wonderful formulae :

In the same spirit one sees for example that 3Ls 5,2 ~~t~3~ is a ra-

tional multiple of Ilowever numerical experimentation (in which I was kindly
assisted by Dennis PAYNE) has convinced me that in no cases, other than those cite%
does one obtain a tidy simple closed expression for logsine integrals at n/3.
This begins to explain why there are no further formulae of the shape of those
cited in section 1 above.

In the manner described, we can similarly obtain a "logsinh" integral

A careful evaluation in which one eliminates dilogarithms by applying some



straightforward functional equations, for details see [6], yields

On the other ~4~~ p. ~3~, y reports the celebrated identity

and we obtain the formula (2) as being equivalent to that identity. Thus

LEWIN mentions the equivalent formula :

I have not been able to find any ingenious method, analogous to that applicable
to the logsine integrals, 9 for evaluating the logsinh integrals. Incidentally,

(4) is obtained by substituting z = in the functional equation

noting that

The absence of so simple a functional equation as (5) for higher polylogarithms,
again begins to explain the absence of further formulae of the shape of those re-

ported in section 1.

3. We now realise that APERY’s proof of the irrationality of ~(3~ is no more

than the observation that

together with

for integers p , q with q.~===[l ~ 2 , .. , Then the p /q appro-

ximate ~(3) too well for it to be rational. BEUKERS [2] has very elegantly noted
that (with P (x) x)n , the Legendre polynomials on (0 , 1] ),

. dx

and since he can show directly that Z ~ ~ ~ ~ ~ -- ~2 ~n this entirely bypasses
the dif f iculties involved in finding the exac t formulae (6) , 9 ~ 7 ~ , Thes e exact for-



mulae arise from the discovery that the sequence ~b ~ satisfies the recursion
n

and that solution {an}’ ~0 ~ ~ ’ ~l ~ ~ ’ is such that

= 

Proving that (8) is satisfied is quite non-trivial (see the ingenious argument of
ZAGIER reported in [ 5]) . However ASKEY has remarked to me that b is a balanced

n

hypergeometric polynomial evaluated at 1 ,

here, if (a) = l) ... (03B1 + m - 1) , we wri te

This viewpoint encourages one to consider the three-term linear relations that

connect contiguous expressions

as two of the parameters change by 1 in such a manner as to maintain the balan-

cing condition. The recursion (8) now appears as a very degenerate case of a stra-
tegic combination of these contiguity relations. This is a nice instance of genera-
lisation providing a simplification. In this same spirit one should attack the pro-
blem of proving that BEUKERS’ t integral satisfies (8) by considering the integrals

together with the known recurrence relations for the Legendre polynomials. I con-

clude these rather sparse remarks by mentioning that details of the .F.. relations

are given by WILSON in his thesis [7].

4. I now turn to what I believe to be the real mathematics underlying APERY’S

proof. Consider the differential equation

From general theory (just consider the leading coefficient) one knows there are
two independent solutions a~x~ ~ y b(x) regular at the origin, and these may

normalise so that, say

One now notices that it happens to happen that the b all are integers and
that [1 , 2 , ... , nj" a is always integral! t Denote by 03B1’ = (l -V2) the

smaller zero of x" - 34x + 1 . Then the general theory implies that the limit



indeed exists. Moreover, the series

is regular for t and thus converges for x with 

follows that

so the a /b (= p ~q ~ are exce llent rational approximations Finally, it
n n n n 

-

happens that 03BB = 03B6(3) , which is therefore irrational.

A simpler example to me by BEUKERS, independently of proof) is the
case

one notices that there is a constant 03BB , namely

so that a(x) - is regular for jxj  (l + this yields good irratio-

nality measures for log 2 , and the idea is readily generalised to do the same

thing for log(l + 2014) y m = 1 , 2 , .... One sees that the linear homogeneous

equation that gives rise to log 2 is

It is plain that the approach just sketched is readily generalised ; 3 one may

obtain irrationality measures for the numbers À that so arise in suitable cir-

cumstances. In particular, it is important that the related solutions a(x) and

b(x) of the differential equation be G-functions.

5. MORK has made the following remark o Consider a linear homogeneous diffe-

rential equation

and suppose that the equation has a complete set of solutions regular at x == 0 .

Let -- 03A3 c xn be such a solution with rational coefficients c , and denoten n

by dn the lowest common multiple of the denominators of the rational numbers

... , ’ Then
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with r the p-adic radius of convergence of the series c(x) , and the sum is
p

over all primes p , have G-function solutions exactly when A is finite.

I should add that this observation very likely is relevant to the mild controver-

sy that surrounds the appropriate definition of G- and E-functions. I join LANG

in suggesting the following : suppose we have a solution c(x) of (9) 
n

c(x~ = ~ c xn or c(x~ _ ~ c 
n n n: .

and that the common denominator d is such that d all E > 0 ; then

there already an A’ such that |dn| 1/n  A , t o one should be able to make simi-
n

lar remarks about the size of the cn themselves ; moreover everything should

generalize the case when things are defined over an algebraic number field.

The point of view of the last two sections is being studied by my student Greg

GRIFFITHS.
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