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ON THE DETERMINATION OF GAUSS SUMS

by John H. LOXTON

Seminaire DELANGE-PISOT-POITOU
(Théorie des nombres)
18e année, 1976/77, n° 27, 12 p. 23 mai 1977

1. The quadratic Gauss sum.

The classical Gauss sum is the sum.

where p is an odd prime, r p is the Legendre symbol, that is the unique quadra-
tic character mod p, S = is a normalised p-th root of unity and the

dash denotes summation over a reduced set of residues mod p . We see at once that

by means of the substitution r = st (mod p) y and the inner sum is p - 1 if

t = - 1 (mod p) and - 1 otherwise, which gives (1).

Thus, T~ is determined up to sign. The particular normalisation S = 

makes T2 a definite complex number which GAUSS found by experiment to be given by
the formula

where ps denotes the positive square root. Four years later, GAUSS [6] also gave
a proof. The idea, which appears more clearly in a later proof of CAUCHY ~3~, is to
consider the product 

~. ,

since the product is just the value of the cyclotomic polynomial of order p at 1,
so that

The difficult step is to settle the ambiguity of sign in (3) because, once that
is done, the sign of cr2 is easily determined by writing it in the form



and simply counting the number of negative factors in the product. To prove (4)~
and so settle the determination of T? , we can use congruence considerations. The

prime p is completely ramified in and, if X = 1 - ~ , we have the prime

ideal factorisation [p] = [03BB]p-1. Now, on the one hand, (r p) ~ r(p-1)/2 (mod p) ,
so

Here, we observe that I . 
rn is 0 or - 1 (mod p) according as (p-l))n

~ rmodp
or not, so that only the term s = (p - 1)/2 contributes to the sum. By Wilson’s

theorem, the result is

On the other hand, by similar arguments,

and this is enough to prove (4) (Cf. HASSE [8], section 20.5).

There are a large number of proofs of (2) in the literature (Cf. CASSELS [2].).

However, the one sketched above has been the most fruitful in suggesting extensions

of the results for T2 to generalised Gauss sums.

2. Generalised Gauss sums.

A. Notation.

Let x be a Dirichlet character with conductor q , say. If m is a multiple of

q , then x induces a character mod m which we denote The generalised

Gauss sum is a sum of the shape

where the sum is taken over a reduced set of residues mod m . Elementary manipula-

tions rapidly enable us to express the sum (5) in terms of the primitive Gauss sum

Chapter 20, gives a systematic discussion). By means of the change of

variable s = cr (mod q) , we get the useful fact

(this is actually valid when (c, q) > 1 because both sides are zero).



Further reduction, via the Chinese remainder theorem, shows that we need only

consider Gauss sums whose conductor is a prime power, p say. ODONI [18] has
shown tha.t the case 03BD > 1 can be completely settled. I illustrate the method,

take p to be an odd prime and le.t B be a primitive character mod p with

B) > 1 . Then x(l + p) must be a root of unity, say

In the Gauss sum r(~) ~ we write r==s(l+ giving

Now, x(1 + = exp(- so the inner sum is 0 unless s==a (mod p),
whence

where we have written s = a(l + up) (mod p~" ) .
In particular, if v = 2 , the last sum is trivial, and we get

The formulae in the general case are more complicated, but still reasonably ex-

plicit.

C. Prime conductor.

There remains the problem of evaluating Gauss sums with odd prime conductor, p

say. This subject remains rather mysterious, but we can make some general remarks.

If x , ~r are Dirichlet characters mod p , we define the Jacobi sum

If none of X, V , x~ is the principal character mod p , then manipulation of

the double sum for T(x~~ ’n(B , ,~~ gives the identity

Suppose that the character x has order k . Then

By telescoping these equations together, we get



that is, , T(X)k = ~)(x) , say, is in Q(exp(2in/k)) . T~e can regard this as the ana-

logue of (1). The problem then is to determine which of the k-th roots of w(x)
is T(X) . Only the cases k = 3 and 4 have received much attention, and we shall

examine them in the remainder of this report. Some remarks on larger values of k ,

mainly of an experimental nature, are made by 

. 3. The cubic Gauss sum.

A. Kummer’s conjecture.

Let p be a prime with p = 1 (mod 3) , and let w = (- 1 + ~- 3)/2 be a cube

root of unity. By factorising p in Q( w) , we see that we can write

where a and b are rational integers determined uniquely by the additional requi-

rements

(a + 3b -. 3 f 2 be one of the prime divisors of p in Q(w) , and defi-

ne a cub ic charac te r on Z[ w] mod ~ by

This induces a character on Z mod p . The Kummer sum, or cubic Gauss sum, is

where g = as before. GAUSS ~5~, article 358, showed that

To prove this, we note that T T~ = P and

say, so and a is one of the prime divisors of p in Q(w) . To

identify a with u , we observe that a = 0 (mod a~ , y by calculating T~ modulo

the prime divisor of  in Q(w , 03BE) , and that a = - 1 (mod 3) , since

(In fact, these remarks give another proof of the decomposition (9).)

From (10), T~ is determined up to a cube root of unity, and the problem apparent-

ly first pointed out by and V.-A. LEBESGUE C 12~ is to determine T..
itself. For a given prime p, there are just three possibilities, namely

~ arx r ~ l  ~t/3 , ~r/3  ~ arg ~r ~  2~/3 , 2~;/3  arg T~) y  n .

investigated the 45 cases with p  500 and found the relative fre-

quencies 3 : 2 : 1 for these three possibilities. GOLDSTINE and von NEUMANN ~’~~



investigated p  10000 and found these ratios to be 4 t 3 ° 2 , which may be

suggestive to a numerologist since 2 + 3 + 4 = 32. However, LEHMER C 13 and
CASSELS [1] have extended the range of the experiments and report a continuing
trend towards randomness. A propos of this, 9 MORENO [17] has recently shown that the

argument of T3 is uniformly distributed in the three intervals listed above. If

we the normalisation b > 0 made above, y and so def ine the Kummer sum mod 

for each first degree = - 1 (mod 3) in Q(03C9) , then MORENO’s observation

is that the symbol = p "3~2 T 3 is a Grossenchakter in and so, by

the Hecke theory of L-functions,

as X -~-~ ~ , for each integer n, and this is equivalent to the uniform distribu-

tion of T33 . There is now some theoretical evidence for the uniform distribution
of T3’ to be described in the next paragraph. However, these statistical results

are almost certainly not the whole truth. The real goal should be a formula for T3
like Gauss’s formula (l) for but no-one has yet been able to guess what such

a f ormula might be, le t al one t o prove one.

B. A lication of som e ideas from the theor of automorphic functions.

In several papers, for example [9] KUBOTA has indicated a method f or ob-

taining some asymptotic results on the distribution of Gauss sums. For Kummer sums,

this arises as follows. Let (~-)~ be the cubic residue symbol in Q(w) , and set
r = ~ ~ in I (mod 3~~ :

By using the law of cubic reciprocity, we find that ~ is a character on r .

The group r acts discontinuously on the upper half-space H = C x R as follows.

We represent a point u = (z ,v) in H by the matrix

and, for w in C , we write

Then the action of r on ~I is given by

Following SELBERG, we introduce the Eisenstein series corresponding to the cusp c~:



where roo = (y in r ; ~~ = ~~ and, for u = ~ z , v) in we have written

v = v(u) . It follows from Selberg’s general theory [21] that E(u , y s) has a me-

romorphic continuation to the whole s-plane. If we complement E(u , s) by three

further Eisenstein series corresponding to the remaining inequivalent essential

cusps, then there is a functional equation connecting s and 2 - s .On forming

the Fourier expansion of E~u , s) with respect to we find that the coef-

ficients are Dirichlet series satisfying similar functional equations and whose

coefficients are Kummer sums. The theory shows that these Dirichlet series are re-

gular in the half-plane re s > 4/3 . In particular, the regularity at s = 3/2
together with a well-known tauberian theorem gives

(In the sum, a runs through all integers .- 1 (mod 3 ) in and T~ is the

Kummer sum mod a defined by

The theory has recently been reworked and refurbished in the cubic case by

PATTERSON [19]. Be shows inter alia that if we take Kummer sums mod a for any in-

teger then indeed their arguments are uniformly distri-

buted round the circle. Moreover, theory and experiment suggest the asymptotic for-

mula ~ !~ c /,.

This formula comes from an attempt to apply the Hardy-Littlewood circle method,
but the contributions from the minor arcs cannot at present be satisfactorily esti-

mated. The same difficulty obstructs the proof of the assertion, almost certainly

true, that the argument of T~ ~ as p runs through the primes congruent to

1 (mod 3) , is uniformly distributed round the circle.

C. An elementar roduct related to the Kummer 

I turn now to two attempts to construct cubic analogues to the product a2. The
first idea goes back to CAUCHY [3J. We choose a rational integer q with

q == uj (mod t~) a third set 6 of residues mod p , that is 6 consists of

(p - 1)/3 rational integers and the numbers r, qr , q r (r in 5) form a re-

duced set of residues mod p . Set

This is not yet quite satisfactory since 03C33 depends on the particular choice of
the third set 6 . However, by vilson’s theorem

so we have



for some cube root 0 of unity. We therefore consider the normalised product

which is independent of the choice of 5 . It is easy to see that a typical auto-

morphism g of Q(w , sends P.. to P3 , that is Pq trans-

forms in the same way as the Gauss sum So we have P.. = 03B103C43 for some integer

a in Q(w) . This idea was rediscovered by RESHETUKEA [20], and he found, by expe-
riment, the curious fact that for all primes p  6000 , the number P33 lies in

the upper half-plane. (Of course , this observation depends on the normalisation of

~ , which we have taken to lie in the upper half-plane.) This turned out to be not
quite the right conjecture since more exact calculations suggested that

In view of (10) , we can consider ( 12) to be an analogue of the elementary equa-
tion o? = T2 in the quadratic case (Cf. (3)) In fact, (12) is true, so it is

only natural to ask whether the present situation contains an analogue of the

deeper equation (4). On the basis of numerical evidence from the primes p  5000 ,
I make the following conjecture :

Observe, incidentally, that because of our normalisation, x(3) = w-b is an

elementary quantity. The proof of ( 12~, asserted above is a somewhat more elaborate

version of the argument sketched in paragraph 4.B and the correction no-

ted in C 1,5~~ . Unfortunately, this analysis is not adequate for dealing with the pro-
duct P3 itself.

D. A non-elementar product.

Another product related to the Kummer sum has been proposed by The

elliptic curve y 2 _ 4x - 1 is parametrised over C by the Weierstrass elliptic
functions x = p(z) , y = p’(z) with periods e Z~w~ , where 6 = 3.05’~9.., is

the smallest real period. From the equation for the ~-.division points on the curve,
we find

Let C~ be a third set of residues mod n as before, 9 and set

where 0 is the normalising cube root of unity given by ( 11 . Then P3 = 1/c? ~
using the complex multiplication p(03C9z) = 03C9 p(z) on the curve, and from (10) ,



where e is one of the cube roots of unity. CASSELS gives the following conjecture

for the determination of e ~ valid by computation for p  5000 :

CONJECTURE 2 [2]. - ~ = P ~P ~

The conjecture can be put into an equivalent form which may be amenable to a p-

adic attack along the lines of the proof of (4) in section 1. Such an approach
leads to a problem about points of finite order on the elliptic curve y = 4x - 1

over a field of characteristic p ~ but does not at the moment seem to be tractable.

4* The quartic Gauss sum.

A. A conjecture for the value of the Gauss sum.

Let p be a prime with p == 1 (mod 4) . Then we can write p = a 9 + b ~ where

a and b are rational integers determined uniquely by the normalisations

Let 03C9 = a + ib be one of the prime divisors of p in Q(i) and define a

quartic character x on Z mod p by

The quartic Gauss sum is

where § = as before. In this case, we have

To see this, we compute

say. Put a = A + iB . Now a = 0 (mod), a = 1 (mod 2) and

where q satisfies q = - 1 (mod p) and the last step results on replacing s

by qs in the sum. The above is c ongruent mod 4 to

so, finally, a = - ~ . This argument also gives the congruence



Again, T4 is determined up to sign. Computations for p  5000 indicate the

following conjecture :

T~ = i ~,( 2i ~ (---;-~~ p ~~ ~
Here, c~ denotes the principal square root, and p~~ denotes the positive

fourth root. In addition, we remark that x(2) = i"~ and X(i) = i~P"~~ . The
simplicity of the formula is rather unexpected.

B. Reformulation of the conjecture in terms of an elementar roduct.

We can reformulate the conjecture in terms of a trigonometric product along the

lines of conjecture 1 ; 9 this will serve to explain how the conjecture was found. A

naive approach, similar to that in paragraph 3.C, leads us to examine the product

where q is a rational integer with q = i that is q = - 

(mod p) , and 6 is a fourth set of residues mod p . To fix the notation, ~ve

choose 6 so that the absolutely least residues mod p of r and qr for each

r in 6 are positive. It is easy to see that replacing § by ~ with 

takes J. to In particular, if we replace 03BE by 03BEa and then by 03BEaq
in o. and multiply the resulting expressions together, observing that (I) = 1

*by (15), we get 
.... 1 ~ /0

It is convenient to put

we have o. = 03B103C44 for some integer a in Q(i) , so as a first step we

might seek some connection between 03C324 and 03C424 , that is, between P. and  .

Again, experiments do not reveal quite what ~e expect, but rather that 

as p 2014~ co . Now that we know what to look for, it becomes possible to prove that

as p 2014~ °° for any ~ > 0 .We can therefore give an equivalent form of conjecture
3 :

CONJECTURE arg(- i x(2i) T4 P4) --~-~ 0 as p 2014~ co .

T o prove ( 16 ~ , we proceed as follows. Write

and define G(t) to be a continuous branch of the argument of F(t) for 0 ~ t~ p/2,
normalised so that G(p/4) = 0 . Observe that



for some integer k . Now, by a version of the Euler-MacLaurin sum formula,

with an appropriate error term R . By taking advantage of some fortuitous cancel-

tation, we can show that R = 0 (-1+~p) for any a > 0 , so we have

In order to compute k, we define the n-th branch of to correspond

to the range - n + 2nn  arg F(t ~  n + 2nn . Now k is just the change in branch

number of arg F(t) as t goes from 0 to p/4. But arg F(t) changes branch

when sin(2nbt/p) = 0 and sin(203C0at/p)  0 , so k mod 2 is the number of inte-

gers l with 0  l  and  0 . If we assume for the moment

that a and b are positive, p then we get

so in this case, (-1)k = 2,ibl e An identical calculation shows that this result
continues to hold for any disposition of the signs of a and b . This proves our

assertion,

C , Concluding rema,rks.

McGETTRICK [16] has found an analogue of Cassels’conjecture 2 for the quartic ca-

se. Set
_. "

and let (p(z) be the lemniscate function, that is the solution of ~(z) = 
with (p(z/4) = 1 . Thus is a doubly periodic function with period lattice

6 and has the complex multiplication = i (p(z) . In the course of pro-
ving quartic reciprocity, EISENSTEIN [4] showed that the product of the 03C9-division

points of (p(z) is

Consequently, if we set

then P~ = (- 1)~~~ ~ . Comparing this with (l4)~ we have T. P = for

some fourth root E of unity. On the basis of computation for p  5700, 6 is

given as follows :

CONJECTURE 5 (after McGETTRICK [l6]). - r. P = - x(- 2) 03C9p1/4 .
As remarked in paragraph 3.D, there is a p-adic reformulation of the conjecture



involving the ~- and Ø-division points on the elliptic curve Y 2 - 1 - x4 .
There is also another possible p-adic approach to conjectures 3 and 5 using ideas

of YAMAMOTO [22]. He starts with the Kronecker class number formula

where h is the class number and e is the fundamental unit of Q~/F) . The pro-
duct has a canonical square root and, by comparing signs, we find that

where R is the set of quadratic residues in the set ~1 , 2, ... , (p - 1)/2) .
Using this and some further lemmas from YAMAMOTO, we can reduce conjecture 3 p-

adically, giving yet another conjecture involving h and quantities connected

with the simple continued fraction expansion of 
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