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23-01

APPLICATIONS OF SPECIAL FUNCTIONS

FOR THE GENERAL LINEAR GROUP TO NUMBER THEORY

by Audrey TERRAS (1)

Seminaire DELANGE-PISOT-POITOU
(Theorie des Nombres)
18e annee, 1976/77, n° 23, 16 p. 25 avril 1977

1. Automorphic forms for Gl(n , R)-Eisenstein series.

We shall be oo nsidering special functions on tho (weakly) symetric space fn of

positive definite (real) n x n matrices. Now @ n can be identified with the homo-
geneous space Gl(n ~ (n) via the map which sends A in to 

where tA denotes the transpose of the matrix A . For the basic results on syme-

tric spaces see [8] and [22]. Note that A in Gl(n , R) acts on P in Pn via

P ~ p[A] = tAPA .

As in [3], an automorphic form f in m(Gl(n , Z) , 03BB) for 03BB = (03BBj) ~ Cn is a

Gl(n , Z)-invariant function f : pn ~ C (satisfying certain growth conditions)

which is an eigenfunction with eigenvalue 03BBj for the Gl(n, R)-invariant diffe-
rential operator Dj defined by

That is f satisfies

It is proved 64), that ... , Dn generate all the R;-
invariant differential operators on pn . See [8] and [22] for the more general
theory.

The analogy between the definition of Z) , ~) and the usual definition

of automorphic forms is best understood by reading MAASS [16] where the theory is

developed for Sl(2). In this case one studies (instead of holomorphic functions

on the upper half plane H ) eigenfunctions of the Laplacian on H which are in-

variant under Sl(2 , Z) . MAASS shows (~ 16~, p. 197-218) that Re s > 1 implies

that s(s - l)) = 1 (~). That is, the only automorphic forms in

this case are the Eisenstein series which we are about to write down. For Re s ~ 1

the situation is very mysterious. One expects to find cusp forms but one is unable

to write down the analogues of the explicit examples one had in the classical holo-

morphic case.

(~) Partially supported by an NSF Grant, and the "Sonderforschungsbereich fUr
theoretische Mathematik an der Universität Bonn".

(~) Actually, one has to multiply ?4aass’ s functions g in 

by y~ in order to obtain our functions f in J2) , s(s - 



Connections with representation theory, classical PDE’s, the Riemann hypothesis

have made the subject interesting to many people. The possible generalization of

the result quoted above to Gl(n) appears to be open at the moment.

What are the Eisenstein series for Gl ( n , PL~ ? They are special functions on

Q n generalizing Epstein’s zeta function. Such functions have been investigated in

~ 10~~ ~ 12~, ~ 15~~ § 17), ~22~, [29], [30], [32]. The simplest case involves only one
complex variable s and this is the only case that we shall consider here. Taking

k to be an integer between 1 and n , we define the Eisenstein series by

. Here j?) is the determinant of P and the sum is over n x k matrices A of

rank k inequivalent under right multiplication by elements of Gl(n , Z) . Using
Minkowski’s description of a fundamental domain for ~ modulo Gl(n , Z) , KOECHER

shows, in [lO], that one can bound Z~ by a product of Epstein zeta functions Z~ ,
thus proving convergence in the stated region Re s >’~- ( ).

If P has first diagonal block i. e.

then MAASS shows in [15](p. 69), that is eigen for all the Gl(n , R)-
invariant differential operators on (P . Thus the Z k satisfy (l).

The case k = 1 is Epstein’s zeta function. When n = 3 for example, these func-

tions have been used to express certain potential functions in crystal physics and

they required the analytic continuation of the function beyond the region where (2)

converges (Cf. [4]). There have been many’ number-theoretical applications of this

case also. Many of these come from Hecke’s integral formula ([7], p. 198 ff) which

writes the Dedekind zeta function of an algebraic number field K as a sum over

the ideal class group of integrals of certain Epstein zeta functions For ima-

ginary quadratic field K the integral disappears. See [23] and [26] for applica-
tions of this relation between K and Gl(n). We shall return to this subject in

§ 3.
Another application of the Eisenstein series (2) involves the case n = k which

can be shown to reduce to a product of Riemann zeta functions :

for the proof. In C 25 ~ ~ I, p. 459-468), SIEGEL used the analytic continua-

tion of (3) to obtain a proof of Minkowski’s formula for the volume of the funda-

(3) Using the Minkowski-Hlawka theorem (Cf. [41J, or the case k = 1 of [42]),
one can see that the integral of Z (r , s) over P /G1(n , Z) with

I pl - 1 1 is finite for Re s > n/2 . Here t 
P 

is defined by (19).



mental domain of P in P of determinant 1 modulo Gl(n y ~) ( ). Unfortunately,
the proof had a gap for a long time (the same gap as in [l0])~ since the analytic

continuation of Z by Riemann’ s method of theta functions runs into trouble due

to the singular matrices summed over in the theta series. Some methods of solving

the problem were found by SIEGEL in [25](lII, p. 328-333) and SELBERG [l5](p. 209

ff) and [29~(§ 1). The situation appears far more difficult in the case k > 1 . We

shall return to this subject in § 3.

2. Special functions arisin in Fourier coefficients of automorphic forms - K-

Bessel functions.

What do we mean by a Fourier expansion of f in Z) , ~) ? Given a de-

composition n = k + m of n as a sum of 2 positive integers, we can write a par-

tial Iwasawa decomposition (Cf. [8])

Here I denotes the identity matrix, 0 the zero matrix. The invariance of f in

Z) , ~~ under Gl(n , Z~ implies that f(P) is periodic of period 1 in

Q . Thus, we have a Fourier expansion

The natural idea is to use the V) to study f as MAASS does in [15] and

~ 1,6~, in analogous situations for other Lie groups. The differential equations f

satisf ies imply certain PDE’s for the coefficients cN . It is easy to see by sepa-

ration of variable s as in [16](p. 212) that an eigenfunction of Q~ invariant

under Sl(2 , Z~ has K-Bessel functions as its Fourier coefficients. One wonders

what happens for Z) , ~~ . Rather than considering arbitrary functions f

in Z) , ~~ ~ we shall look at the special case of Eisenstein series. The

Fourier coefficients of these Eisenstein series will be seen to be matrix argument

generalizations of K-Bessel functions.

Our first example is Epstein’s zeta function. Suppose n = k + m and set
I ~ / B

Then we have as in [31] ( )

(4) See BOREL [3](p. 20-25) and MAASS [l5](p. 122 ff) for descriptions of funda-
mental domains for P modulo Gl(n , Z) and in greater generality.

(5) An easier proof can be had using the transformation formula of theta rather
than applying Poisson summation directly to s) , as H. RESNIKOFF has noted.



where for positive real p and q

Thus Epstein’ s zeta function is a singular form in the sense of [20] 
That is, the Fourier series of Z (P~ ~ , s) for n = k + m involves only a sum

over N ’ ~ of rank 1. This means that 2 or higher dimensional Mellin transforms

of Epstein zeta functions would diverge as we shall see later.

Formula (7) has seen many applications in number theory, e. g. [26] in the proof
that there are exac tly 9 imaginary quadratic f ields of class number one. One can

also use (7) to prove Kronecker’s limit formula which expresses the constant term
in the Laurent expansion of Z 2 (P , s) in terms of the Dedekindzeta function

(Cf. [31J p. 478, and [23]).

Now let us consider the Fourier expansion of Z k (P , s) corresponding to the

decomposition n = k + m . We shall assume that m b k, which is no restriction

since, as in [29](p. 174), the functions Z.(P~ , s) and Z ~P , s) are

essentially the same. In this case, it has appeared easier to consider the

Eisenstein series for Sl(n), rather than that for Gl(n) . The relation between
the two is the f o llowing ( Cf . [29])

where. ,Z) denotes the parabolic subgroup of matrices of the form

with U a k x k matrix and W an m x m matrix. The Fourier expansion of (9)
can be obtained by the method BAILY [2](p. 228-240) uses to obtain Siegel’s

result [25](II, p. 97-137) on Fourier coefficients of Eisenstein series for Sp(n) .
BAILY obtains Siegel’s matrix decompositions from the Bruhat decomposition. The

Fourier expansion is shown in [32] to be

Here A denotes the first r columns of A . And U (U) denotes an analoguer s

of Siegel’s singular series (Cf. [15] p. 30) :

where v(R) is the product of the reduced denominators of the elementary divisors
of R. The other part of the Fourier coefficient is a special function for P ~



a K-Bessel function of symetric rx r matrix arguments A and B defined by

Such functions were first considered by HERZ in [9 ~~. They clearly generalize (8)

and, moreover, Siegel’ s gamma function :

Note that K(r) (A , B) satisfies the differential equation
s

where denotes the partial differential operator obtained by taking the de-

terminant of the matrix a/aA of differential operators defined before ( 1 ) .

One might expect to be able to use ( 10 ) in order to analytically continue

Z.(P , s) as in the case k = 1 . Unfortunately the singular series 03C3s(U) is not

well enough understood to do this. The K-Bessel functions in (12) are better under-

stood. See [32] for some of their properties. It would be useful to be able to imi-

tate the proof of (7.) in [31] to obtain the rest of the Fourier expansions of

s) corresponding to the other decompositions of n as a sum of two posi-

tive integers (neither equal to k ) and in order to obtain a simpler result than

(10), i. e. a result not explicitly involving the singular series.

Let us close this section with an application of Fourier expansions of Epstein

zeta functions over number fields. One needs to define Eisenstein series for 6~n
over a number field K . This is done in [34], ~35~, [36], for example. Then the

Fourier expansion of the Eisenstein series Z"(P~ ~ , s) will have the Dedekind

zeta function in its constant term and products of K-Bessel functions in

its non-constant terms. This leads to various results for ~ K (s) , for example, the

functional equation, as Siegel noticed p. 177). It also implies a rela-

tion between 03B6K(s) and 03B6K(s - 1 ) which gives formulas reminiscent of those of

Ramanujan for 03B6(3) and Grosswald for algebraic number fields (Cf. [33]). One also

obtains a fonnula for the product of the class number and the regulator.

For example, if K is totally real, the result is

Here ~K is the different, dK the absolute value of the discriminant, n the

degree,

See [19J for some analogous results for L-functions.



3. Complete and incom lete Mellin transf orms and the analytic continuation of

Eisenstein series via Riemann’s method of theta functions - incomplete gamma func-
tions.

Let us first consider the simplest example of Riemann’s analytic continuation of

Eisenstein series via the method of theta functions, as it has been called in crys-

tal physics (Cf. [4] p. 388). LAVRIK and MONTGOMERY (Cf. [l3] and C 18~~ have recent-

ly used the method to obtain estimates for zeta functions at s = a + it , for

large t, for example. Another application of the method can be found 

where class numbers of pure cubic fields are computed. The method is applied to

Dirichlet L-functions, for example, in [5] and [38]. Fins,lly, the method is used

in [27] and [28] to evaluate Artin L-functions and thus find class fields of total-

ly real quadratic and cubic fields. Let us use Riemann’s idea first for the Epstein
zeta function Z and then look at the complications that.ensue when the method is
used on Koecher’ s zeta function Z k in (2).

First define for P E t > 0 ,

Then Poisson summation yields the transformation formula

I t follows that

Replacing t by t-l in the first integral, and using the transformation formu-

la of the theta function, one sees easily that

where the incomplete gamma function is defined by

Since G(s, a) dies exponentially as ‘a! approaches infinity, convergence in

(17) is exponentially faster than in the original Dirichlet series. Thus if one has

a program to compute incomplete gamma functions, one can use (17~ to compute
~ Epstein’s zeta function. Simple recursive procedures for the computation of G(s,a)
were developed by R. TERRAS in [39] and [40]. The programs are very short and would
even fit into an HP-25. We used these programs to obtain graphs of O 1 (P , s) in

~38~ as well as graphs of L-functions of Kronecker symbols. A graph is included on

the next page, showing ~1 1 (P , s) with

and s in (0, 1/2) . Note that s) has a pole at s = 0 though it is



not visible on the graph. Thus Z has a zero very close to s = 0 . Formula ~1‘~~
will also allow us to produce contour maps of Epstein zeta functions for complex
values of s , since complex argument incomplete gamma programs have already been

developed by R. TERRAS. Such graphs would be interesting, since it is known chat

Epstein zeta functions of binary quadiatic forms usually have other weird zeros be-
sides the real ones we just found, i. e., zeros in Re s > 1 . Such results for

higher degree forms appear to be open at the moment. 
’

Another application of (17) is the deduction of the following relation between
the size of the minimum of P e P over the integer lattice and the sign of

Epstein’s zeta function. Suppose that P is in P and set 
,



Then results of MINKOWSKI and BLICHFELDT (Cf. [ 6 ]) say that, for any P G 

£p  c where c is a positive constant asymptotic to nine as n - C° .
n n

The theorem of Minkowski-Hlawka (Cf [41]) implies also that there exist P G pn
such that

Using (17), it is easy to see that, if P E with P ( = 1 and lP  nu/2ne
with 0  u  1 , then for n sufficiently large (depending on u and larger for

u nearer 1), nu/2) > 0 . It follows that s) = 0 for some

s E (nu/2, n/2). The details are in [37].

Thus if the Riemann hypothesis holds for the Dedekind zeta function of a number

field then the quadratic forms appearing in Reckons integral formula ([7], p. 198

ff) must (mostly) have large minima over the integer lattice.

Finally, note that (17) can be used to derive Reckels integral formula for the
analytic continuation of the Dedekind zeta function ~(s) via higher dimensional

incomplete gamma functions (Cf. C?~, ~ 11~, ~24~~. First set

Then Hecke’s integral formula (~7~, p. 198 ff) says

Here n is the degree, I~ the ideal class group, Py the regulator, ~~K the

number of roots of 1, d~ the absolute value of the discriminant, rl the number

of real conjugate fields, r2 the number of pairs of complex conjugate fields,
r = r~ + r~ - 1 . The fundamental units will be ~~ , ... , ~r . For an ideal class12 1 ’ ’ r 

~
C take an ideal ~t in C with ~ _ ... Q Then the notation P 

Q~x
is explained as follows 1 

~ ~ ~c’~

It is then not hard to see that (17) implies

And F~ is the following sum of higher dimensional incomplete gamma functions.



where

Again the series for converges exponentially faster than the original

Dirichlet series for ~(s) . For totally real fields K y the incomplete gamma

function defined by (25) is a special case of the following for s , a in C~
with Re a > 0 : .

Note that LAVRIK ( Cf. ~ 13 ~~ has obtained analogous expansions in general for

Dirichlet series satisfying functional equations with multiple gamma factors, and

used them to study the growth of the Dedekind zeta function with C s ! . The asymp-
totic behaviour of a) as l al -a 0 is crucial for the Brauer-Siegel theo-

rem on the growth of the product of the class number and the regulator with the

absolute value of the discriminant. In particular,

is easily proved, as well as a similar result for (25). Thus it appears useful to

study the higher dimensional incomplete gamma functions. One can even compute some

of them. For example, STARK computed some 3-dimensional incomplete gamma functions

in [28] in order to find the Hilbert class field of a certain totally real cubic

field (non abelian), obtained by adjoining a root of x - x - 9x + 8 = 0 to the

rationals.

It is perhaps surprising to learn that the C (s , a) are actually special func-

tions for @ 
n 

analogous to the K-Bessel functions defined by (l2) Suppose that
A e (P and Define the incomplete gamma function of matrix argument by

n 201420142014 ~ ’ ......!!..!! .... J !. ! !

is the (right-) spherical function (Of. [22]) ( )
/.B

Making the change of variables X = with T upper triangular, one sees that

and thus

(6) incidentally~ ~ is eigen for all the Gl(n , R)-invariant differential ope-
rators on 6~ ~Cf. ~ 15~~ p. 69 ~ and thus can be used to form Eisenstein series of
more than one complex variable. These are studied in~ 2~~~ ~,~ ~~ 15 ~~ 2~ ~~3U ~~or example.



Before proceeding to the consideration of the Eisenstein series 7~~ , there is

one more application of the preceeding to algebraic number theory. Let r1+r2 .
Then from results it follows that

The graph of

looks like

One might hope to be able to choose x correctly in order to obtain arithmetical

information about K .

Let us next seek to generalize the method of proof of ( 17 ~ to obtain the analytic

continuation of the Eisenstein series s) defined by (2). In general, we

need to consider the question : o How does one obtain the analytic continuation of a

Dirichlet series corresponding to an automorphic form by (higher dimensional)

Mellin transform ? We want to apply the theory not just to the forms f satisfying

( 1, ~ but also to theta functions which are restrictions of holomorphic forms for

Sp(n) . It would be interesting to consider the relation between automorphic forms

for Sp(n) and automorphic forms for Gl(~.~ in some detail, but we shall not do

this here. It would also be interesting to try to invert the Mellin transform. In

the one variable case, that is essentially Fourier inversion. Thus in the higher

dimensional case, one would expect to need Fourier inversion for symetric spaces

as in [8J.

Now let us consider the problem of obtaining the analytic continuation of the

Eisenstein series Z-.. Th~~ first observation is that £ is essentially the



Mellin transform of the rank k terms in the theta function

The transformation formula

is easily proved via the Poisson summation formula (Cf. [111’]). Now let us denote by

9 r the rank r part of theta a

Then, for set

with 0393k(s) as defined by (13). Then one has :

Here S denotes a fundamental domain for Rk modulo Gl(k , Z) , e. g, the

convex cone of Minkowski-reduced matrices in [15](§ 9). Formula (36) says that
s) is the k-dimensional Mellin transform of theta. Note that, when k = 1,

you are just integrating over R . When k > 1 , however, one must integrate over

the complicated domain ~k in order to compensate for the dif ference between the

sum giving theta and the sum giving the Eisenstein .series. And one has to take the

Mellin transform of

In fact, the Nellin transform of 2r diverges for 0  r  k . And we shall soon

see that even worse things happen. Replacing in (36) as in (29),
and ~k by the larger fundamental domain of k modulo the parabolic subgroup of

Gl(n , Z) leaving W invariant, one obtains Eisenstein series in several varia-

bles as Mellin transforms of theta.

Now let us attempt to generalize Riemann’s method of analytic continuation which

gave ( 17 ) . In [10] and [25J(r, p. 459-468) one attempted to imitate Riemann by
pulling out the determinant of X and breaking the integral up into the region

where jx) is greater than one and the rest. Thus one obtained



Using the transformation formula of theta, it follows that

The first two integrals converge for all s by the convergence of (2). And the
last integral is obviously

, ,_1tl~

Here ck denotes a positive constant.

Now one would hope to do something with the second integral. We know that it has

to be finite for Re s > n/2 . If indeed it lias no pole at s = n/2 then setting
k = n and using (3) yields the Minkowski formula for v(k)

, .... , t~

Unfortunately, however,

is infinite if 1 ~ r  k for all values of s . This can be proved using two

facts. First, one needs a decomposition of the rank r integral matrices 

and second one needs a generalization of the theorem of Minkowski-Hlawka (Cf. [4.1]).
~~e shall state these two results since they appear to be promising for future work
on Eisenstein series for Gl(n) . One might also expect that there exist generali-
zations to other Lie groups.

The decomposition theorem for rank r matrices N E fnxk says : N can be uni-

quely written as

where (A (k9r~~; ~ E Z~~H(r ~ Z~ , E 2 9 rk(B) = r .

Here H(r , Z) denotes the subgroup of of matrices of the form
. , ,



The decomposition (41) is proved easily using elementary divisor theory.

The generalization of the Minkowski-Hlawka theorem which we need says that 
for

suficiently nice functions f : o Rkxr ~ C (k > r) there is a constant ck,r 
> 0

(independent of f ) such that 
n

The proof of (42) goes exactly as in [4l]. For f(X) = one would expect

to say something nicer. Formula (42) can be found in [l7].

Now, let us examine S (P~ , s) with 1 ~ r $ k - 1 . Using (41) and (42), we

find that ~

Thus letting R be a positive symmetric matrix such that R 2 = t P[B] and

then chancing variables in the inner integral via V = UR, 9 one obtains

Since the Dirichlet series defining the Eisenstein series in (2) diverges at

s = k/2 by comparison with a product of Epstein zeta function (Cf. [lO], p. 7),

one sees that S (P’°" , s) is infinite.

Thus we conclude that cancellation must be occuring in the second integral in

(37). There are several possible directions in which one can proceed in order to

deal with this problem, as we mentioned at the end of § 1. However, none of these

methods appear to lead to a simple result for Z k unless k = 1 (See [l2], p. 260-

266, for example). Thus it appears useful to attempt to use (41) and (42) to obtain

a direct evaluation of the 3rd integral in (37). Perhaps one should attempt to

break up the integral in (36) differently. For example, one can show that

where c > 0 depends only on k . Here ~ is defined by (l9). Note that if

n = k = 2 then the above integral has a double pole at s = 1/2 1 which is the

correct behaviour of A (P~’ , s) at s = 1/2 by (3). must unfortunately

leave the reader dangling at this point and put off the complete solution to the

problem of finding a direct analytic continuation of these Eisenstein series 
at

least until the spring snows in Europe cease.



Our final remarks concern one-dimensional Mellin transforms of Epstein zeta func-

tions. For example, write

for the constant term in the Fourier expansion (7). Then

upon changing var’ .bles in the double integral via y = t/u , z = ut .

Now apply Riemann’s trick to this Mellin transform and obtain

’ 

+ the same with V and T exchanged and - s for s .

Sere G~ denotes the higher dimensional incomplete gamma function defined by

(26). Such a result would also follow from Lavrik’s general theory [13]’ In the spe-

cial case that k = m = 1 and V = T = 1 ~ a = 0 one obtains the following for-

mula for the Riemann zeta function (involving only the 1-dimensional incomplete

gamma function G~ = G ) (A~(l,s/2) = r(s/2) ~(s))

Such results should be useful for the study of such Eisenstein series and admit

many possible generalizations, e. g. to L-functions and to the other Eisenstein

series, taking higher dimensional Mellin transforms.
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