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THE POLYNOMIAL x3 + x2 + x - 1

AND ELLIPTIC CURVES OF CONDUCTOR 11.

by Alfred J. VAN DER POORTEN

Seminaire DELANGE-PISOT-POITOU
(Theorie des nombres)
18e annee, 1976/77, n° 17, 7 p. 28 fevrier 1977

This is a summary of a more extensive report in preparation at present. For each

positive integer N y let fO(N) be the group of all matrices a b), where
a , b , c , d are integers with ad - be = 1 and c divisible by N . According to

a conjecture of Taniyama-Weil (see ~12~), all elliptic curves of conductor N ,
which are defined over the rational field Q , are parametrized by modular func-

tions Until the present work, the first case, N = 11 , has remained

open.

Three curves of conductor 11 were known, namely

The first of these curves is a model for the compactification of the quotient
being the upper half plane. The second and third curves are iso-

genous to the first over ,~ . Hence all three curves are parametrised by modular
functions for r 0 ( 1 ~. ) . Moreover, SERRE [7] has shown that, up to isomorphism, (2)
and (3) are the only elliptic curves which are isogenous to ( 1 ) over Q . Thus the
conjecture is true for N = 11 if, and only if, (1), (2) and (3) are the only el-

liptic curves of conductor 11 defined over Q, up to isomorphism. Below we des-

cribe a calculation which proves this to be the case.

1. Obtaining a Thue-Mahler equation.

Consider the field B of 2-division points of an elliptic curve E of conduc-

tor p. If E has no rational 2-division point then B/~ has Galois group S~ ;
B is cubic cyclic over a field F with F = or Q(- p) ; and B/F is un-

ramified except at 2 (see SETZER [8]). Let B be a field with the above properties
(a "possible 2-division field for a prime p "). Denote by k a cubic extension

obtained by adjoining the x-coordinate of one 2-division point Let 0.
be the integers of k, and w2 be a basis of 0. as a ~module.
For any 8 in Ok define M03B8 to be the ring generated by e ; then M is of

finite index in 0 . Define I ( 6 ) to be that index. Let D03B8 be the discriminant

of M03B8 .



with ve~ . Then 9 =q~+ q~ 
q. are quadratic forms in li, v , and l(e) = Define the index form

to be f(u , v) = uq~ - It is a homogeneous cubic with rational integer coef-

ficients.

We note that f(u, v) factors in k ; indeed f(u , v)) = l(~))N(u+ 
where ~ = (~’ - wj) is in k ( a , a~ are the conjugates of

a e k ).

We can find a model for the elliptic curve E of the shape

y~ = x~ + a~ x~ + a. x + a~ with == ± 2 p~

and such that (e ~ 0) is a 2-division point on E y where 9 = u~, + v~ for

some u , Then the discriminant of x + a~ x + a. x + a~ , is given
by A/16 == ± 2~ Let D be the field discriminant of k/Q. Then D~ = D

so f(u, v)=(D"~(±2~ pr» . Now D =±p or ±4p so we have

f(u , v) = ± 

where r=2s+ 1 y s an integer, and e = 3 if 2 ramifies in k/Q , e = 4 if

not ; the sign of A is the same as that of D.

Now suppose f(u , v) v+cuv + dv and v~) =± 2 p
where the discriminant of f is ± ~"~~ p . Let k = where ~ is a zero

of X~ + bX~ + acX + a~ d , and define ~ = - a.c - b~ + a~ . Then (~
is a zero of +bdX- ad .Then 1 ~ ~ y w is a basis for 0~ and f

is the form giving l(e) for 6 = + va)~ . Let X + a~ X + a. X + a~ be the

minimal polynomial for v.. (jj? . Then for

(4) y~ = x~ + a~ x~ + a~ x + ag ,
we have A = ± 2~~ p~~~ . After checking (4) for reduction at 2 and p one may ob-

tain, from solutions of an elliptic curve of conductor p

given by (4).

Let p = 11. Then E has no rational 2-division point and the only possible

2-division field is the field generated by the zeros of X 3 +X 2 +X-ly which
has discriminant - 44 (see [4]). Thus to find all elliptic curves over Q with

conductor 11, it suffices to consider integer solutions u, v with (u, Vy 11)= 1
on the Thue-Mahler equation

Plainly, for any solution, 2/u , 2/v .

The above argument is taken from SETZER [8’]. A different, and extremely involved,

argument of AGRAWAL and COATES [l’] also leads to the conclusion reached above.

2. Obtaining linear forms in logarithms.

Let e ~ R , 6 and 03B4 be the zero of p(x) +x-l. Then in 



we have 11 = (1 + 2e)(2 + e2)2 , and

implies

where we note that e is a fundamental unit of K .

By the identity

which by (5) and its conjugates is

Write 2b~ - b2 and COATES

[l] verified by hand that for 17 the equation [7] gives rise to 7 solutions
of f(u , v) 3 of which, namely u==0 , v= 1 ~ s=0 b.=b?==0) ;
u=4 ~ v =-3 ~ s =2 (h~ = 1 , ~~=2 , b =0) and respectively u = 56 ,
v = - 103 , y s = 0 (h.. = 17 , b. = b~ = 0) give rise to elliptic curves of con-

ductor 11, namely the curves (l), (2) and respectively (3) mentioned above.

We should remark that, for s = 0, the solutions are already reported by DELONE

and FADEEV [4].

Thus it suffices for us to show that (7) has no solutions with H > 17 (or, if
there be solutions, that these do not give rise to curves of conductor 11). It is

easily seen (see below) that not both b are positive, and in any event

We write ~=6/6’, (2+T~)/(2+ 6~) , ~= (e-’6)/(e- &#x26;) . Then we

where ~ = 0,8665 , provided that 

Further, writing y~ = = ~~ = we ob-

tain

(where , as usual, ~x~ denotes the distance of the real number x from the

nearest integer).

We now turn to the 11-adic situation. The polynomial p(x) splits over

(we shall write e = ./- 11 in the 11-adic case) with zeros



and S . With the same notation for the 11-adic numbers as for the complex numbers

defined above , we obtain the 11-adic analogue of (8~, namely

We note that from the 11-adic estimates given above we can read off that 8Jt&#x26; - 03B4,
03B82~1 + 2~ , e))2 + 03B42 whilst E, 03B4 , 2 + ~2 , 1 + 26 are relatively prime to 6 .

Moreover from (5) and its conjugates we see that + ~v , 03B8b2~u + 6v y since

8(e - 6) and (u , v , 11) = 1 , it follows that not both b. and b~ are posi-

tive~ and since ej)(&#x26; - ’6’) in any event b~~ 1 .

Since each 03B3i in (10) satisfies 03B8~(03B3i - l) the 11-adic logarithms log ’y.

exist. In particular, orde log ’y? = l) = 1 and on writing

(10) becomes

(11) ~ ~. -1. ) =ZH 2
provided that h ~ (note that h is not negative).

We are apparently left with the possibility that |h0| > hi but h 0  0 . But al-

ready when h ‘ - 2 and h1 the right hand side of (7) has absolute value
~ 2 whilst the left hand side plainly has absolute value at most 2 (being 1 minus

a number on the unit circle). Here we use

E = 0,543689013... , &#x26; = - 0,77~844507... t i x 1,115142508...

in making the above estimates.

3. Com utational methods.

By virtue of refined versions of Baker’s inequality for linear forms in loga-

rithms with rational coefficients (prepared by the author with the present problem
in mind), it may be concluded that (9) has no solution with H ~ ~.015 say, and

that ( 11, ~ has no solution with H ~.~ 141~ say (by virtue of an 11-adic version of

the cited inequality).

David C. HUNT and the author have shown that the inequalities (9) and (11) have
no solution in the range 17  H  10 ~’ S . D. C. HUNT used the DC program (infinite
precision desk calculator) available as part of the UNIX operating system (Bell la-
boratories) on the University of New South Wales School of Mathematics PDP-11/40
(Digital Equipment Corporation). DC provides, automatically, infinite integer pre-

cision and 99 decimal places ; it also has n-ary arithmetic for n  16 (this was

convenient, with n = 11 ). We firstly did all calculations (of course to quite li-
mi ted accuracy) on the HP-67 (Hewlett-Packard) pocke t programmable calculator ; all

numerical data reported here is from that source. It proved easy to check the cal-

culations of AGRAWAL and COATES in this way. It is perhaps amusing to remark that

the solution h.. = 17 , h - 0 of (7) s that is, the solution u = 5~ , ~ v = -103,



s = 0 of f(u ~ v) = lis arises from ~~7 - 56 - 10 ~ and implies

4. An idea of DAVENPORT-ELLISON.

Our techniques borrow heavily from suggestions of ELLISON [5J which generalise an
idea of DAVENPORT 

In (9), we simultaneously approximate ~ , ~ obtaining

is a contradiction whenever 45 log 10  3H/4 , that is if H ~139 . This argument

rapidly brings H down to reasonable size (the next step showed that (9) has no so-
lution with H >~ 28 ) and the remaining cases were then checked by hand.

We employed an efficient simultaneous approximation algorithm due to G. SZEKERES

~9 ~. The principle of this algorithm is sequential "Farey bisection" of simplexes
of "maximal" size ; in practise, it appears to provide plenty of good simultaneous

approximations at reasonable speed (some 600 steps were required above).

In the 11-adic case, we notice that each ~i is of the shape

Writing b/a = c , we have, conveniently,

Even using the 11-ary facility of DC , the calculation presents some difficulty
because of the need to separately express the l/(2n + l) as 11-adic expansions ;
the divisions by which we obtain ~ ~ ~ were also a lengthy task.

As in the complex case, we now simultaneously approximate ~n ~ ~1 obtaining,
say,

Writing 11 r. = q~. - p. ~ we obtain

In fact, the Szekeres algorithm automatically yields 2 further solutions

(p(~1~ ~ and (p~2~ ~ p12~ , q~2~) to (13) so that the determinant of

the 3 solutions is ± 1 . Then the results (15) are inconsistent, and we can con-

clude that H  120 . A repetitLon of the argument yields H  24 and remaining



cases are checked by hand.

5. Rational approximation of p-adic numbers.

Since this is not obvious, we now remark on how one obtains good p-adic rational

approximations (for some details, see MAHLER [6], p. 64). Above we "chop" the 11-

adic expansion of the 03C8j at the 60-th term obtaining large integers 03C8’j  1160 .
(if ~ =1~ a. 11~ then ~ =~+ ...+ 11~ a- ~~.) 

].

We now approximate (by the Szekeres algorithm) the two rational numbers ~!/11 ,
obtaining simultaneous approximants r./q / with q  11 40 . Then 

(here we have noticed that ’ 1160 - r/q is rational with denominator 1160 q ) .
Moreover 03C8’ - p/q = 11 r/q and this (usually) yields p/q)  60 as

required.

6. The "Baker inequalities".

In the manuscript on which the work described was based, namely that of AGRAWAL

and the analogues of (8) and (10) are shown to have no solution with
H ~ 10700 . We are now able to do much better. Firstly, the general techniques em-

ployed have very much improved ; 9 for some details, see the papers of BAKER [2J and
VAN DER Secondly, I have learned from WALDSCHMIDT [11] a number of
extra refinements that can be introduced. Principally, these involve a more effi-

cient extrapolation, using the size rather than the height of the numbers involved,
and noting whether the numbers involved are close to 1 relative to their size. De-

tailed results are in preparation.
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