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SPECTRAL PROPERTIES OF ARITHMETIC FUNCTIONS

BY Teturo KAMAE

Seminaire DELANGE-PISOT-POITOU
(Theorie des nombres)
18e année, 1976/77, nO 12, 8 p. 17 janvier 1977

The purpose of this talk is to investigate the spectral properties of arithmetic

functions, particularly of functions on digits to some integral base q ~ 2 . There

are preceding works on this subject by S. KAKUTANI [5], [6], M* MENDÈS FRANCE [8],
[9], H. DABOUSSI and MENDÈS FRANCE [4], J. COQUET and M. MENDÈS FRANCE [2] and
J. BÉSINEAU [l]. Some parts of results here are proved in a joint work [3] of the
lecturer and Till. MENDES FRANCE and J. COQUET.

i. 

For an arithmetic function a e C2014 ~ the Besicovitch norm is defined as follows

By S and N , we denote the class of a ~ CN such that jjajj  ~ and j)aj) = 0 ,
respectively. It is known that the normed linear space )) ))) ~ which is de-
noted by  and called the Besicovitch space, is complete and hence a Banach space.

T denotes a shift on C2014 . Note that T on  is a continuous linear operator

which is bijective.

By 0 , we denote the class of Q ~ S for which the correlations

exist for all m E Z . In this case, there exists a unique measure A on T = 
which we call the spectral measure of a, such that

for any m E Z , where e(x) = exp(203C0ix) . VJe can construct 
03B1 

directly without

using correlations. Let 1~n be the measure on T such that
N ...

An easy computation shows that

for any m E Z . Hence, I1n converges weakly to 03B1 as n ~ ~ . For two measures

(by measures, we mean positive finite Borel measures unless mentioned otherwise )
P and Q on T , the affinity p(P , Q) is defined by

where R is a measure with respect to which P and Q are absolutely continuous.



It is clear that this definition does not depend on the selection of R. It is

known that if Pn -~ P and Q n --~ ~ weakly, then we have

Thus, if then

In this theorem, let ~(n) = e ( ~.n) ~ ~ n E N ) . Then, since A = 6 , we have
the following corollary.

Note that p(P , Q) = 0 is equivalent to that P and Q are singular to each

other. For ~ E ~ , let H(a) be the closed subspace of ? generated by

(T m E Z) . It is easy to see that H(a) is a separable Hilbert space with

the inner product

which always exists as long H(a) .

Suppose that A and A~ are singular to each other. Then by the above theorem,
we have =0 (Vm , z) . Hence, 

Moreover, there is a complete characterization of the property that 03B1 and A
are singular to each other.

THEOREM 2 (A.N. Then, A and A are sin-

gular to each other if, and only if, and 03B1 ~ H(03B1 + 03B2) .

For a signed measure P, we denote its total variance by jjP)) . Note that

~03B1~ = ~03B1~2 for any a ~ ?. Let. a , P e ? . Then,



2. q-multiplicative functions.

Let q ~ 2 be an integer. Let (k = 0 , 1 , 2 , ...) be the digits in

q-adic representation of n E N :

Then, it is known 2 that c E ~ . Using the relation 

where rc = (c , ...) , y it holds for any continuous function f on T that

Hence, we have

for any n = :L , 2 , ... Since

Considering the corollary, we have the following theorem :



for any X e T . Thus, A 
c 

is continuous.

Moreover, it can be proved [3J that is singular with respect to the

Lebesgue measure.

Since A (T) == 1 , this implies that A c 
is discrete.

THEOREM 5 [3]. - A is either discrete or continuous and singular corres-

ponding as B._~ lick - ~q t) ~ for some or not.



3. Mutual singularity.

IL f_ as are singular to each other.

Sketch of the proof of theorem 6. - Let

Then, it is known (H. G. SENGE and E. G. STRAUS [l0]) that F 2(n) F (n) ~ 0P ~

(n -~ o~) . ~e can assume that q is odd. By T (n) y we denote the greatest number
j such that there exist integers 0 ~ k,  k~  ...  k~_ satisfying e~ (n)>0
and e~- (n)  q - 1 for i=1~2y...~j. Since 

" 2i2014l

"2i

It follows from this that

We can prove, using this facty that

Then it follows that

On the other hand, we can prove that

Thus we have

hence S p E ~ S + S ) . ~. By theorem 2 and the fact that
H(f03BB . Sp) | H(f~ 0 S ) , we conclude and fm°S q are singular to

each otner. P ~ ~ ~~q



~~~ can prove that if, and only l= lick - °~ ° But ~’~

do not know whether this condition is sufficient for the mutual singularity of A 
c

and 03B6d or not.

4 . Almost periodic func t ions .

Recall that a e 0ll is called an almost periodic function in the sense of

Besicovitch if it belongs to the closed subspace Q of  generated by {f03BB ; XG %.
By theorem 3, if cY G ? , then ct G Q and A is discrete.

THEOREM 7* - I is almost periodic in the sense of Besicovi tch if, and only if,

there exists X e T such that

converge modulo 1 when 

Proof. - Suppose that ’c is almost periodic. Then A is discrete and by

theorem 5, there exists 03BB ~ T such that 
c

Here, we assume without loss of generality that )jc. - 03BBqk~ = jc. - for

k=0 ~ 1 ~ 2 ~ ...

Take l ~ N such that |ck - 03BBqk| l/q for any k = l , l + 1 , ... Since

03B6 (n) = 03B6(nql) (~ n e N) y 03B6 is also almost periodic.
~ " T~c

Hence y .the inner product (03B603C4lc , f03BB) exists. Therefore,

exists. Since

exists and is not 0,



should exist. That is to say that

Since ck - 03BBqk - 0 (k -+ G") , this implies that 03A3Nk=0 (ck - 03BBqk) converges

modulo l when ?I - ~ . Conversely, suppose that there exists X G T such that

tlere, ~~e assume without loss of generality that

Since o~ is almost periodic, it is sufficient to prove that ‘~~ - --.~ 0

( N --~ co) , ~~e have
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