SÉMINAIRE DELANGE-PISOT-POITOU. Théorie des nombres

TETURO KAMAE

Spectral properties of arithmetic functions

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 18, n° 1 (1976-1977), exp. n° 12, p. 1-8

http://www.numdam.org/item?id=SDPP_1976-1977__18_1_A9_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1976-1977, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

17 janvier 1977

SPECTRAL PROPERTIES OF ARITHMETIC FUNCTIONS

BY Teturo KAMAE

The purpose of this talk is to investigate the spectral properties of arithmetic functions, particularly of functions on digits to some integral base $q \ge 2$. There are preceding works on this subject by S. KAKUTANI [5], [6], M. MENDÈS FRANCE [8], [9], H. DABOUSSI and M. MENDÈS FRANCE [4], J. COQUET and M. MENDÈS FRANCE [2] and J. BÉSINEAU [1]. Some parts of results here are proved in a joint work [3] of the lecturer and M. MENDÈS FRANCE and J. COQUET.

1. General theory.

For an arithmetic function $\alpha \in \underline{\mathbb{C}}^{\mathbb{N}}$, the Besicovitch norm is defined as follows $\|\alpha\| = (\overline{\lim}_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} |\alpha(j)|^2)^{\frac{1}{2}} \; .$

By $\mathbb B$ and $\mathbb R$, we denote the class of $\alpha\in \overset{\mathbb N}{\sum}$ such that $\|\alpha\|<\infty$ and $\|\alpha\|=0$, respectively. It is known that the normed linear space ($\mathbb B/\mathbb R$, $\|\cdot\|$), which is denoted by $\widetilde{\mathbb B}$ and called the Besicovitch space, is complete and hence a Banach space.

T denotes a shift on $\widetilde{\mathbb{C}^{\mathbb{N}}}$. Note that $\underline{\mathbb{T}}$ on $\widetilde{\mathbb{G}}$ is a continuous linear operator which is bijective.

By $\mathbb Q$, we denote the class of $\alpha \in \mathbb B$ for which the correlations

$$\gamma_{\alpha}(m) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \alpha(j + m) \overline{\alpha(j)}$$

exist for all $m \in \mathbb{Z}$. In this case, there exists a unique measure Λ_{α} on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, which we call the spectral measure of α , such that

$$\gamma_{\alpha}(m) = \int_{T} e(m\lambda) d\Lambda_{\alpha}(\lambda)$$

for any $m\in \mathbb{Z}$, where $e(x)=\exp(2\pi ix)$. We can construct Λ_{α} directly without using correlations. Let Λ_{α}^n be the measure on \underline{T} such that

$$d\Lambda_{\alpha}^{n}(\lambda) = \frac{1}{n} \left| \sum_{j=0}^{n-1} \alpha(j) e(-j\lambda) \right|^{2} d\lambda .$$

An easy computation shows that

$$\lim_{n\to\infty}\int_{\underline{\mathbb{T}}} e(m\lambda) d\Lambda_{\alpha}^{n}(\lambda) = \gamma_{\alpha}(m)$$

for any $m\in \mathbb{Z}$. Hence, Λ^n_α converges weakly to Λ_α as $n\to\infty$. For two measures (by measures, we mean positive finite Borel measures unless mentioned otherwise) P and Q on \mathbb{T} , the affinity $\rho(P,Q)$ is defined by

$$\rho(\text{P , Q}) = \int_{\text{T}} \sqrt{\frac{dP}{dR}} \sqrt{\frac{dQ}{dR}} \ dR$$
 ,

where R is a measure with respect to which P and Q are absolutely continuous.

It is clear that this definition does not depend on the selection of R . It is known that if $P_n \to P$ and $Q_n \to Q$ weakly, then we have

$$\overline{\lim}_{n\to\infty}\;\rho(\textbf{P}_n\;\text{, }\textbf{Q}_n)\leqslant\rho(\textbf{P}\;\text{, }\textbf{Q})\;\text{.}$$

Thus, if α , $\beta \in \Omega$, then

$$\begin{split} \rho(\Lambda_{\alpha} \text{ , } \Lambda_{\beta}) &\geqslant \overline{\lim}_{n \to \infty} \ \rho(\Lambda_{\alpha}^{n} \text{ , } \Lambda_{\beta}^{n}) \\ &= \overline{\lim}_{n \to \infty} \frac{1}{n} \int_{\underline{T}} |\Sigma_{j=0}^{n-1} \ \alpha(j) \ e(-j\lambda)| |\Sigma_{k=0}^{n-1} \ \beta(j) \ e(-k\lambda)| \ d\lambda \\ &\geqslant \overline{\lim}_{n \to \infty} \frac{1}{n} |\int_{\underline{T}} \Sigma_{j=0}^{n-1} \ \alpha(j) \ e(-j\lambda) \sum_{k=0}^{n-1} \overline{\beta(k)} \ e(k\lambda) \ d\Lambda| \\ &= \overline{\lim}_{n \to \infty} \frac{1}{n} |\Sigma_{j=0}^{n-1} \ \alpha(j) \ \overline{\beta(j)}| \text{ .} \end{split}$$

THEOREM 1 [3]. - For α , $\beta \in \mathbb{O}$, we have $\overline{\lim}_{n \to \infty} \frac{1}{n} \, |\Sigma_{j=0}^{n-1} \, \alpha(j+m) \, \overline{\beta(j)}| \, \leqslant \, \rho(\Lambda_{\alpha} \, , \, \Lambda_{\beta}) \quad \underline{\text{for any}} \quad m \in \, \underline{Z} \, .$

In this theorem, let $\,\beta(n)=e(\lambda n)\,$ (V $n\in\,\underline{\mathbb{N}})$. Then, since $\,\Lambda_{\beta}=\delta_{\lambda}$, we have the following corollary.

Note that $\rho(P,Q)=0$ is equivalent to that P and Q are singular to each other. For $\alpha\in Q$, let $H(\alpha)$ be the closed subspace of $\widetilde{\mathbb{B}}$ generated by $\{T^m \ \alpha \ ; \ m\in Z\}$. It is easy to see that $H(\alpha)$ is a separable Hilbert space with the inner product

$$(\eta, \zeta) = \lim_{n\to\infty} \frac{1}{n} \sum_{j=0}^{n-1} \eta(j) \overline{\zeta(j)},$$

Suppose that Λ_{α} and Λ_{β} are singular to each other. Then by the above theorem, we have $(\mathbb{T}^m\ \alpha\ ,\ \mathbb{T}^\ell\ \beta)=0$ $(\forall\ m\ ,\ \ell\in\underline{Z})$. Hence, $\mathrm{H}(\alpha)\perp\mathrm{H}(\beta)$.

Moreover, there is a complete characterization of the property that $~\Lambda_{\alpha}~$ and $~\Lambda_{\beta}$ are singular to each other.

THEOREM 2 (A. N. KOLMOGOROV [7]). - Let α , $\beta \in \mathbb{Q}$. Then, Λ_{α} and Λ_{β} are singular to each other if, and only if, $H(\alpha) \perp H(\beta)$ and $\alpha \in H(\alpha + \beta)$.

For a signed measure P , we denote its total variance by $\|P\|$. Note that $\|\Lambda_{\alpha}\| = \|\alpha\|^2$ for any $\alpha \in \mathbb{Q}$. Let α , $\beta \in \mathbb{Q}$. Then,

$$\left\|\Lambda_{\alpha} - \Lambda_{\beta}\right\| \leq \lim_{n \to \infty} \left\|\Lambda_{\alpha}^{n} - \Lambda_{\beta}^{n}\right\| = \lim_{n \to \infty} \frac{1}{n} \int_{\underline{T}} \left\|\sum_{j=0}^{n-1} \alpha(j) e(-j\lambda)\right|^{2} - \left|\sum_{j=0}^{n-1} \beta(j) e(-j\lambda)\right|^{2} d\lambda$$

$$\leq \underbrace{\lim_{n \to \infty}}_{n \to \infty} \frac{1}{n} \int_{\underline{\mathbb{T}}} \big| \sum_{\mathtt{j} = 0}^{n-1} \big(\alpha(\mathtt{j}) - \beta(\mathtt{j})\big) \ \mathrm{e}(-\mathtt{j}\lambda) \big| \big(\big| \sum_{\mathtt{j} = 0}^{n-1} \alpha(\mathtt{j}) \ \mathrm{e}(-\mathtt{j}\lambda) \big| + \big| \sum_{\mathtt{j} = 0}^{n-1} \beta(\mathtt{j}) \ \mathrm{e}(-\mathtt{j}\lambda) \big| \big) \ \mathrm{d}\lambda$$

$$\leq \lim_{n \to \infty} (\frac{1}{n} \int_{\underline{T}} |\sum_{j=0}^{n-1} (\alpha(j) - \beta(j)) e(-j\lambda)|^2 d\lambda)^{\frac{1}{2}} \times (\frac{1}{n} \int_{\underline{T}} (|\sum_{j=0}^{n-1} \alpha(j) e(-j\lambda)| + |\sum_{j=0}^{n-1} \beta(j) e(-j\lambda)|)^2 d\lambda)^{\frac{1}{2}}$$

$$<\frac{\lim\limits_{n\to\infty}}{\|\alpha-\beta\|}(\frac{2}{n}\int_{\underline{T}}(|\sum\limits_{j=0}^{n-1}\alpha(j)|e(-j\lambda)|^2+|\sum\limits_{j=0}^{n-1}\beta(j)|e(-j\lambda)|^2)d\lambda)^{\frac{1}{2}}=\|\alpha-\beta\|\sqrt{2\|\alpha\|^2+2\|\beta\|^2}.$$

THEOREM 3. - Let $\alpha_n \in \mathbb{Q}$ (n = 1, 2, ...), $\alpha \in \mathbb{G}$ and $\lim_{n \to \infty} ||\alpha - \alpha_n|| = 0$. Then, we have $\alpha \in \mathbb{Q}$ and $\lim_{n\to\infty} ||\Lambda_{\alpha} - \Lambda_{\alpha}|| = 0$.

2. q-multiplicative functions.

Let $q \geqslant 2$ be an integer. Let $e_k^q(n)$ (k = 0, 1, 2, ...) be the digits in q-adic representation of $n \in N$:

$$n = \sum_{k=0}^{\infty} e_k^q(n) \ q^k \qquad (e_k^q(n) \in \{0, 1, \dots, q-1\}; \quad k = 0, 1, 2, \dots) \ .$$

Let $c = (c_0, c_1, c_2, \ldots)$ be a sequence of real numbers. Let

$$\zeta_{\mathbf{c}}(\mathbf{n}) = \mathbf{e}(\sum_{k=0}^{\infty} c_k e_k^{\mathbf{q}}(\mathbf{n})) \qquad (\forall \mathbf{n} \in \underline{\mathbb{N}}).$$

Then, it is known [2] that $\zeta_c \in \mathbb{Q}$. Using the relation that $\zeta_c(nq) = \zeta_{Tc}(n)$, where $Tc = (c_1, c_2, ...)$, it holds for any continuous function f on T that $\int_{\underline{T}} f \, d\Lambda_{\zeta_{0}} = \lim_{n \to \infty} \int_{\underline{T}} f \, d\Lambda_{\zeta_{0}}^{q}$

$$= \lim_{n \to \infty} \int_{\underline{T}} f(\lambda) \frac{1}{q^n} | \sum_{j=0}^{q^{n-1}} \zeta_c(j) e(-j\lambda) |^2 d\lambda$$

$$= \lim_{n \to \infty} \int_{\underline{T}} f(\lambda) \frac{1}{q} | \sum_{j=0}^{q-1} e(j(c_0 - \lambda)) |^2 \frac{1}{q^{n-1}} | \sum_{j=0}^{q^{n-1}-1} \zeta_{Tc}(j) e(-jq\lambda) |^2 d\lambda$$

$$= \lim_{n \to \infty} \int_{\underline{T}} f(\lambda) \frac{1}{q} | \sum_{j=0}^{q-1} e(j(c_0 - \lambda)) |^2 \frac{1}{q} d\Lambda_{\zeta_{Tc}}^{q^{n-1}}(q\lambda)$$

$$= \lim_{n \to \infty} \int_{\underline{T}} f(\lambda) \frac{1}{q^2} | \sum_{j=0}^{q-1} e(j(c_0 - \lambda)) |^2 d\Lambda_{\zeta_{Tc}}^{q^{n-1}}(q\lambda) .$$

Hence, we have

$$\frac{d\Lambda_{\zeta_{\mathbf{c}}}(\lambda)}{d\Lambda_{\zeta_{\mathbf{c}}}(q\lambda)} = \frac{1}{q^2} \left| \sum_{j=0}^{q-1} e(j(\mathbf{c}_0 - \lambda)) \right|^2.$$

Thus,

$$\Lambda_{\zeta_{\mathbf{c}}}(\{\lambda\}) = \prod_{k=0}^{n-1} \frac{1}{q^2} |\sum_{j=0}^{q-1} e(j(c_k - \lambda q^k))|^2 \Lambda_{\zeta_{\mathbf{T}^{n_c}}}(\{q^n \lambda\})$$

for any n = 1 , 2 , ... Since

$$\Lambda_{\zeta_{\underline{\tau}^{n}c}}(\{\lambda\}) \leqslant \Lambda_{\zeta_{\underline{\tau}^{n}c}}(\underline{\underline{\tau}}) = \|\zeta_{\underline{\tau}^{n}c}\|^{2} = 1$$
,

we have

$$\Lambda_{\boldsymbol{\zeta_{c}}}(\{\lambda\})^{\frac{1}{2}} \leqslant \underline{\lim}_{n \to \infty} \prod_{k=0}^{n-1} \frac{1}{q} |\Sigma_{j=0}^{q-1} e(j(c_{k} - \lambda q^{k}))| = \underline{\lim}_{n \to \infty} \frac{1}{q^{n}} |\Sigma_{j=0}^{q^{n}-1} \zeta_{c}(j) e(-j\lambda)| .$$

Considering the corollary, we have the following theorem:

$$\Lambda_{\zeta_{\mathbf{c}}}(\{\lambda\})^{\frac{1}{2}} = \prod_{k=0}^{\infty} \frac{1}{q} \left| \sum_{j=0}^{q-1} e(j(c_k - \lambda q^k)) \right| = \prod_{k=0}^{\infty} \left| \frac{\sin \pi q(c_k - \lambda q^k)}{q \sin \pi (c_k - \lambda q^k)} \right|.$$

Suppose that $\sum_{k=0}^{\infty} \|c_k - \lambda_q^k\|^2 = \infty$ for any $\lambda \in \underline{T}$, where for $x \in \underline{R}$, $\|x\| = \min_{n \in \underline{Z}} |x - n|$. Then it follows that

$$\Lambda_{\zeta_{\mathbf{c}}}(\{\lambda\})^{\frac{1}{2}} = \prod_{k=0}^{\infty} \left| \frac{\sin \pi_{\mathbf{q}}(c_{k} - \lambda_{\mathbf{q}}^{k})}{q \sin \pi(c_{k} - \lambda_{\mathbf{q}}^{k})} \right| = 0.$$

for any $\lambda \in \underline{\mathbb{T}}$. Thus, $\Lambda_{\mathbf{c}}$ is continuous.

Moreover, it can be proved [3] that Λ_{c} is singular with respect to the Lebesgue measure.

Now suppose that $\sum_{k=0}^{\infty} \|c_k - \lambda_0 q^k\|^2 < \infty$ for some $\lambda_0 \in \underline{T}$. It holds that

$$\sum_{\lambda \in \underline{T}} \Lambda_{\zeta_{\mathbf{c}}}(\{\lambda\}) = \sum_{\lambda \in [0, 1/q)} \sum_{j=0}^{q-1} \Lambda_{\zeta_{\mathbf{c}}}(\{\lambda + \frac{j}{q}\})$$

$$= \sum_{\lambda \in [0, 1/q)} (\sum_{j=0}^{q-1} \left| \frac{\sin \pi q(\mathbf{c}_{0} - \lambda - \frac{j}{q})}{q \sin \pi(\mathbf{c}_{0} - \lambda - \frac{j}{q})} \right|) \prod_{k=1}^{\infty} \left| \frac{\sin \pi q(\mathbf{c}_{k} - \lambda q^{k})}{q \sin \pi(\mathbf{c}_{k} - \lambda q^{k})} \right|^{2}$$

$$= \sum_{\lambda \in [0, 1/q)} \prod_{k=1}^{\infty} \left| \frac{\sin \pi q(\mathbf{c}_{k} - \lambda q^{k})}{q \sin \pi(\mathbf{c}_{k} - \lambda q^{k})} \right|^{2}$$

$$= \sum_{\lambda \in [0, 1/q)} \Lambda_{\zeta_{\mathbf{T}_{\mathbf{c}}}}(\{\lambda q\}) = \sum_{\lambda \in \mathbf{T}} \Lambda_{\zeta_{\mathbf{T}_{\mathbf{c}}}}(\{\lambda \}).$$

Since

$$1 = \lim_{n \to \infty} \prod_{k=n}^{\infty} \left| \frac{\sin \pi q(c_k - \lambda_0 q^k)}{q \sin \pi(c_k - \lambda_0 q^k)} \right|^2$$

$$= \lim_{n \to \infty} \Lambda_{\zeta_{T^n c}} (\{\lambda_0 q^n\})$$

$$\leq \underline{\lim}_{n \to \infty} \sum_{\lambda \in \underline{T}} \Lambda_{\zeta_{T^n c}} (\{\lambda\})$$

$$\leq \overline{\lim}_{n \to \infty} \sum_{\lambda \in \underline{T}} \Lambda_{\zeta_{T^n c}} (\{\lambda\}) \leq 1 ,$$

we have

$$\Sigma_{\lambda \in \underline{\underline{T}}} \Lambda_{\zeta_{\mathbf{c}}}(\{\lambda\}) = \lim_{n \to \infty} \Sigma_{\lambda \in \underline{\underline{T}}} \Lambda_{\zeta_{\underline{T}}}(\{\lambda\}) = 1.$$

Since $\Lambda_{\zeta_{\mathbf{c}}}(\underline{T}) = 1$, this implies that $\Lambda_{\zeta_{\mathbf{c}}}$ is discrete.

THEOREM 5 [3]. - Λ_{ζ_c} is either discrete or continuous and singular corresponding as $\Sigma_{k=0}^{\infty} \|c_k - \lambda q^k\|^2 < \infty$ for some $\lambda \in \underline{T}$ or not.

3. Mutual singularity.

Let $S_q(n) = \sum_{k=0}^{\infty} e_k^q(n)$ be the sum of digits. Denote $f_{\lambda}(n) = e(\lambda n)$ for $\lambda \in \underline{T}$ and $n \in \underline{N}$. It is known [1] that $H(f_{\lambda} \circ S_p) \perp H(f_{\eta} \circ S_q)$ if (p,q) = 1, $(p-1)\lambda \notin \underline{Z}$ and $(q-1)\eta \notin \underline{Z}$. We can prove further the following theorem.

THEOREM 6. - If (p,q) = 1, $(p-1)\lambda \notin Z$ and $(q-1)\eta \notin Z$, then ${}^{\Lambda}_{\lambda} \circ S_{p}$ and ${}^{\Lambda}_{\lambda} \circ S_{q}$ are singular to each other.

Sketch of the proof of theorem 6. - Let

$$\Gamma_{\mathbf{y}}(\mathbf{n}) = \prod_{k=0}^{\infty} \cos \pi \mathbf{n} \mathbf{y}^{-k}$$
.

Then, it is known (H. G. SENGE and E. G. STRAUS [10]) that $\Gamma_{p2}(n)$ $\Gamma_{q}(n) \rightarrow 0$ $(n \rightarrow \infty)$. We can assume that q is odd. By $\tau_{q}(n)$, we denote the greatest number j such that there exist integers $0 < k_1 < k_2 < \ldots < k_{2j}$ satisfying $e_{k_{2i-1}}^q(n) > 0$ and $e_{k_{2i}}^q(n) < q-1$ for i=1, 2, ..., j. Since

$$\inf_{m>1/p} |\Gamma_{p^2}(p^{2m} - p^{2k})| > 0$$
,

we have

$$\lim_{m\to\infty,\,\ell\to\infty,\,m>\hat{\ell}} \; \Gamma_q(p^{2m} - p^{2\ell}) \; = \; 0 \; \; . \label{eq:constraint}$$

It follows from this that

$$\lim_{m \to \infty, \, \ell \to \infty, \, m > \ell} \tau_{q}(p^{2m} - p^{2\ell}) = \infty .$$

We can prove, using this fact, that

$$\lim_{m\to\infty,\,\,\textbf{k}\to\infty,\,\,m>\textbf{k}} \Gamma_{f_{\eta}\circ S_{q}}(p^{2m}-p^{2\textbf{k}}) = 0.$$

Then it follows that

$$\lim_{N\to\infty} \left\| \frac{1}{N} \sum_{n=1}^{N} T^{p^{2n}} (\mathbf{f}_{\eta} \circ S_{q}) \right\| = 0.$$

On the other hand, we can prove that

$$\lim_{N\to\infty} \left\| \frac{1}{N} \sum_{n=1}^{N} T^{p^{2n}} (f_{\lambda} \circ S_{p}) - K f_{\lambda} \circ S_{p} \right\| = 0 ,$$

where

$$K = \frac{(p-1) e(p\lambda)}{pe((p-1)\lambda) - 1} \neq 0.$$

Thus we have

$$\lim_{N\to\infty} \left\| \frac{1}{NK} \sum_{n=1}^{N} T^{p^{2n}} (f_{\lambda} \circ S_{p} + f_{n} \circ S_{q}) - f_{\lambda} \circ S_{p} \right\| = 0,$$

hence $f_{\lambda} \circ S_p \in H(f_{\lambda} \circ S_p + f_{\eta} \circ S_q)$. By theorem 2 and the fact that $H(f_{\lambda} \circ S_p) \perp H(f_{\eta} \circ S_q)$, we conclude that $\Lambda_{f_{\lambda} \circ S_p}$ and $\Lambda_{f_{\eta} \circ S_q}$ are singular to each other.

Problem. - Let

$$\zeta_{\mathbf{c}}(\mathbf{n}) = \mathbf{e}(\sum_{k=0}^{\infty} c_k e_k^{\mathbf{q}}(\mathbf{n}))$$

and

$$\zeta_{\mathbf{d}}(\mathbf{n}) = e(\sum_{\mathbf{k}=0}^{\infty} d_{\mathbf{k}} e_{\mathbf{k}}^{\mathbf{q}}(\mathbf{n}))$$
.

We can prove that $H(\zeta_c) \perp H(\zeta_d)$ if, and only if, $\sum_{k=0}^\infty \|c_k - d_k\|^2 < \infty$. But we do not know whether this condition is sufficient for the mutual singularity of Λ_{ζ_d} or not.

4. Almost periodic functions.

Recall that $\alpha \in \widetilde{\mathbb{C}}^{\mathbb{N}}$ is called an almost periodic function in the sense of Besicovitch if it belongs to the closed subspace \mathbb{P} of $\widetilde{\mathbb{B}}$ generated by $\{f_{\lambda}; \lambda \in \widetilde{\mathbb{T}}\}$. By theorem 3, if $\alpha \in \mathbb{P}$, then $\alpha \in \mathbb{D}$ and Λ_{α} is discrete.

Let
$$\zeta_{\mathbf{c}}(n) = e^{\left(\sum_{k=0}^{\infty} c_{k} e_{k}^{q}(n)\right)}.$$

THEOREM 7. - ζ_c is almost periodic in the sense of Besicovitch if, and only if, there exists $\lambda \in T$ such that

$$\sum_{k=0}^{\infty} \|\mathbf{c}_{k} - \lambda_{q}^{k}\|^{2} < \infty$$

and that

$$\sum_{k=0}^{N} (c_k - \lambda q^k)$$

converge modulo 1 when $\mathbb{N} \longrightarrow \infty$.

<u>Proof.</u> - Suppose that ζ_c is almost periodic. Then Λ_{ζ_c} is discrete and by theorem 5, there exists $\lambda \in \underline{T}$ such that

$$\sum_{k=0}^{\infty} \|\mathbf{c}_k - \lambda \mathbf{q}^k\|^2 < \infty$$
.

Here, we may assume without loss of generality that $\|c_k - \lambda_q^k\| = \|c_k - \lambda_q^k\|$ for k=0, 1, 2, ...

Take $\ell \in \mathbb{N}$ such that $|c_k - \lambda_q^k| < 1/q$ for any $k = \ell$, $\ell + 1$, ... Since $\zeta_{\tau^{\ell}c}(n) = \zeta_c(nq^n)$ ($\forall n \in \mathbb{N}$), $\zeta_{\tau^{\ell}c}$ is also almost periodic.

Hence, the inner product $(\zeta_{\tau_c}$, $f\lambda)$ exists. Therefore,

$$\begin{aligned} (\zeta_{\mathbf{T}^k \mathbf{c}}, \mathbf{f} \lambda) &= \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \zeta_{\mathbf{T}^k \mathbf{c}}(j) \ \mathbf{e}(-j\lambda) \\ &= \prod_{k=k}^{\infty} \frac{1}{q} \sum_{j=0}^{q-1} \mathbf{e}(j(\mathbf{c}_k - \lambda_q^k)) \\ &= \prod_{k=k}^{\infty} \mathbf{e}(\frac{q-1}{2}(\mathbf{c}_k - \lambda_q^k)) \frac{\sin \pi q(\mathbf{c}_k - \lambda_q^k)}{q \sin \pi (\mathbf{c}_k - \lambda_q^k)} \end{aligned}$$

exists. Since

$$\prod_{k=k}^{\infty} \frac{\sin \pi_q(c_k - \lambda_q^k)}{q \sin \pi(c_k - \lambda_q^k)}$$

exists and is not 0,

$$\prod_{k=\ell}^{\infty} e^{\left(\frac{q-1}{2}\left(c_{k}-\lambda q^{k}\right)\right)} = e^{\left(\sum_{k=\ell}^{\infty} \frac{q-1}{2}\left(c_{k}-\lambda q^{k}\right)\right)}$$

should exist. That is to say that

 $\sum_{k=0}^{N} \frac{q-1}{2} (c_k - \lambda_q^k) \text{ converge modulo 1 when } N \longrightarrow \infty.$

Since $c_k - \lambda q^k \to 0$ $(k \to \infty)$, this implies that $\sum_{k=0}^N (c_k - \lambda q^k)$ converges modulo 1 when $N \to \infty$. Conversely, suppose that there exists $\lambda \in \underline{T}$ such that

$$\sum_{k=0}^{\infty} \|c_k - \lambda_q^k\| < \infty$$

and

$$\sum_{k=0}^{\mathbb{N}} (c_k - \lambda_q^k) \text{ converges modulo 1 when } \mathbb{N} \longrightarrow \infty \text{ .}$$

Here, we assume without loss of generality that

$$\|c_k - \lambda q^k\| = |c_k - \lambda q^k|$$
 (k = 0, 1, 2, ...).

Let

$$\alpha_{N}(n) = e(\lambda n + \sum_{k=0}^{N-1} (c_{k} - \lambda q^{k}) e_{k}^{q}(n)) \qquad (\forall n \in \underline{N}).$$

Since α_N is almost periodic, it is sufficient to prove that $\|\alpha-\alpha_N^{}\| \longrightarrow 0$ (N $\longrightarrow \infty)$. We have

$$\begin{split} \|\alpha - \alpha_{N}\|^{2} &\leq q \ \overline{\lim}_{M \to \infty} \frac{1}{q^{M}} \sum_{j=0}^{q^{M}-1} |1 - e(\sum_{k=N}^{M-1} (c_{k} - \lambda_{q}^{k}) e_{k}^{q}(j))|^{2} \\ &\leq 2\pi q \ \overline{\lim}_{M \to \infty} \frac{1}{q^{M}} \sum_{j=0}^{q^{M}-1} \|\sum_{k=N}^{M-1} (c_{k} - \lambda_{q}^{k}) e_{k}^{q}(j)\|^{2} \\ &\leq 4\pi q \ \overline{\lim}_{M \to \infty} \frac{1}{q^{M}} \sum_{j=0}^{q^{M}-1} (|\sum_{k=N}^{M-1} (c_{k} - \lambda_{q}^{k})(e_{k}^{q}(j) - \frac{q-1}{2})|^{2} \\ &+ \|\frac{q-1}{2} \sum_{k=N}^{M-1} (c_{k} - \lambda_{q}^{k})\|^{2}) \end{split}$$

$$\leqslant 4\pi \sum_{j=0}^{q-1} (j - \frac{q-1}{2})^2 \sum_{k=\mathbb{N}}^{\infty} |c_k - \lambda_q^k|^2$$

+
$$4\pi q \overline{\lim}_{\tilde{\mathbb{N}} \to \infty} \| \sum_{k=N}^{\tilde{\mathbb{N}}-1} \frac{q-1}{2} (c_k - \lambda q^k) \|^2$$
.

Since $\sum_{k=0}^{n} (c_k - \lambda q^k)$ converges modulo 1 when $n \to \infty$, and $c_k - \lambda q^k \to 0$ $(k \to \infty)$,

$$\sum_{k=0}^{n} \frac{q-1}{2} (c_k - \lambda_q^k)$$
 converges modulo 1 when $n \to \infty$.

Hence, $\|\alpha - \alpha_N^{-}\| \longrightarrow 0$ when $N \longrightarrow \infty$.

REFERENCES

- [1] BÉSINEAU (J.). Indépendance statistique d'ensembles liés à la fonction "somme des chiffres", Acta Arithm., Warszawa, t. 20, 1976, p. 401-416.
- [2] COQUET (J.) and MENDÈS FRANCE (M.). Suites à spectre vide et suites pseudoaléatoires, Acta Arithm., Warszawa, t. 32, 1976, p. 99-106.
- [3] COQUET (J.), KAMAE (T.) and MENDES FRANCE (M.). Sur la mesure spectrale de

certaines suites arithmétiques (to appear).

- [4] DABOUSSI (H.) and MENDÈS FRANCE (M.). Spectrum, almost-periodicity and equidistribution modulo 1, Studia Scientiarum Mathematicarum Hungarica (to appear).
- [5] KAKUTANI (S.). Ergodic theory of shift transformations, "Proceedings of the fifth Berkeley symposium on mathematical statistics and probability [1965. Berkeley]", vol. 2, part 2, p. 405-414. Berkeley, University of California Press. 1967.
- [6] KAKUTANI (S.). Strictly ergodic symbolic dynamical systems, "Proceedings of the sixth Berkeley symposium on mathematical statistics and probability [1970. Berkeley]", vol. 2, p. 319-326. Berkeley, University of California Press, 1972.
- [7] KOLMOGOROV (A. N.). Stationary sequences in Hilbert space [in Russian],
 Bull. Moskovskogo Univ., Mat., t. 2, 1941, nº 6, 40 p.
- [8] MENDÈS FRANCE (M.). Nombres normaux. Applications aux fonctions pseudoaléatoires, J. Analyse math., Jerusalem, t. 20, 1967, p. 1-56 (Tnèse Sc. math., Paris 1967).
- [9] MENDÈS FRANCE (M.). Les suites à spectre vide et la répartition modulo 1, J. Number Theory, t. 5, 1973, p. 1-15.
- [10] SENGE (H. G.) and STRAUS (E. G.). PV-numbers and sets of multiplicity, "Proceedings of the Washington State University conference on number theory [1971. Pullman]", p. 55-67. Pullman, Washington State University Press, 1971.

(Texte reçu le 24 janvier 1977)

Teturo KAMAE

U. E. R. de Mathématiques et d'Informatique 351 Cours de la Libération 33405 TALENCE

and

Osaka City University Department of Mathematics Sugimotocho, Osaka JAPAN