SÉMINAIRE DELANGE-PISOT-POITOU. Théorie des nombres

HIROSHI SAITO

On lifting of automorphic forms

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 18, n° 1 (1976-1977), exp. n° 13, p. 1-6

http://www.numdam.org/item?id=SDPP_1976-1977__18_1_A10_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1976-1977, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

21 janvier 1977

ON LIFTING OF AUTOMORPHIC FORMS

by Hiroshi SAITO

Q. - Let F be a totally real algebraic number field with the degree $[F:Q]=\lambda$, and O its maximal order. For the sake of simplicity, we assume that the class number of F is one, and O has a unit with arbitary signature distribution. For an even positive integer k and for the subgroup $\Gamma=\mathrm{GL}_2(O)^+$ of $\mathrm{GL}_2(O)$ consisting of all elements with totally positive determinants, we denote by $\mathrm{S}_k(\Gamma)$ the space of Hilbert cusp forms of weight k with respect to Γ , namely the set of all holomorphic functions f on the λ -fold product of the complex upper half plane H , which satisfy

1°
$$f(\gamma^{(1)} Z_1, \gamma^{(2)} Z_2, \dots, \gamma^{(\ell)} Z_{\ell}) = \prod_{i} (c^{(i)} Z_i + d^{(i)})^k f(Z_1, \dots, Z_{\ell})$$

for $\gamma \in \Gamma$,

2° f vanishes at every cusp.

where $\gamma^{(i)} = \begin{pmatrix} a^{(i)} & b^{(i)} \\ c^{(i)} & d^{(i)} \end{pmatrix}$ are all distinct conjugates of γ over Q. It is

known that an element f of $S_k(\Gamma)$ has a Fourier expansion of the form

$$f(Z_1, \ldots, Z_k) = \sum_{u} c(u) \sum_{(v)=u/v, v>>0} exp 2\pi i (v^{(1)} Z_1 + \cdots + v^{(k)} Z_k)$$

where $\mathfrak U$ runs through all integral ideals of F , and $\mathfrak D$ is the different of the extension $F/\underline{\mathbb Q}$. We denote by $\Phi_{\mathbf f}$ the associated Dirichlet series of f , that is,

$$\Phi_{f}(s) = \sum_{u} C(u) Nu^{s}$$
.

For a place (archimedean or non-archimedean) of F, we denote by F_v the completion of F at v, and for a non-archimedean prime $v=\mathfrak{p}$, we denote by \mathfrak{p} the ring of all \mathfrak{p} -adic integers of $F_\mathfrak{p}$. Let F_A be the adele ring of F, and \mathfrak{U}_F be the open subgroup of $\mathrm{GL}_2(F_A)$ given by

$$\Pi_{\mathfrak{p}:\text{non-archimedean}} \operatorname{GL}_{2}(\mathfrak{O}_{\mathfrak{p}}) \times \Pi_{\mathbf{v}:\text{archimedean}} \operatorname{GL}_{2}(F_{\mathbf{v}})$$
.

Then we can consider the Hecke ring $R(\boldsymbol{u_F}$, $\operatorname{GL}_2(F_A))$ with respect to $\operatorname{GL}_2(F_A)$ and $\boldsymbol{u_F}$, and its action T on $\operatorname{S}_k(\Gamma)$ as in G. SHIMURA [9]. It is known that $\operatorname{S}_k(\Gamma)$ has a basis consisting of common eigen functions for all Hecke operators and that if f is a common eigen function for all Hecke operators with $\operatorname{C}(0)=1$, then the associated Dirichlet series Φ_F has an Euler product of the form

$$\Phi_{\mathbf{f}}(s) = \prod_{\mathbf{p}} (1 - C(\mathbf{p})N\mathbf{p}^{-s} + N\mathbf{p}^{k-1-s})^{-1}$$
,

where p runs through all prime ideals of F.

 $\underline{1}$. - On the following, we assume that F is a totally real algebraic number field which satisfies

- 1° F is a cyclic extension of Q with a prime degree λ ,
- 2° F is a tamely ramified extension of Q,
- 3° The class number of F is one,
- 4° The index $[E:E_{+}]$ is 2^{4} ,

where E is the group of all units of $\mathfrak O$ and E_+ is its subgroup consisting of all totally positive units. It follows from these conditions that the conductor of the extension $\mathbb F/\underline{\mathbb Q}$ is a prime q with $\mathbf q\equiv 1\mod k$.

We fix an embedding of F into the real number field $\underline{\mathbb{R}}$, and consider F as a subfield of $\underline{\mathbb{R}}$. We fix a generator σ of the Galois group $\operatorname{Gal}(F/\underline{\mathbb{Q}})$. With this σ , we consider $\operatorname{GL}_2(F)$ as a subgroup of $\operatorname{GL}_2(\underline{\mathbb{R}})^{\ell}$ by

$$\gamma \mapsto (\gamma, {}^{\sigma}\gamma, \dots, {}^{\sigma^{k-1}}\gamma) \text{ for } \gamma \in GL_2(F).$$

For this fixed generator σ , we define a linear operator T_σ on $S_k(\Gamma)$ by

$$T_{\sigma} f(Z_1, Z_2, \ldots, Z_l) = f(Z_2, \ldots, Z_l, Z_1)$$
.

Using this T $_{\sigma}$ and Hecke operators, we define a subspace $\text{SS}_k(\Gamma)$ of $\text{S}_k(\Gamma)$ as follows

$$\mathrm{SS}_k(\Gamma) = \{ \mathbf{f} \in \mathrm{S}_k(\Gamma) \ ; \ \mathrm{T}_\sigma \ \mathrm{T}(e) \ \mathbf{f} = \mathrm{T}(e) \ \mathrm{T}_\sigma \ \mathbf{f} \ \text{for any} \ e \in \mathrm{R}(\mathfrak{U}_F \ , \ \mathrm{GL}_2(\mathrm{F}_A)) \} \ .$$

It is easy to see that this subspace is stable under the action of Hecke operators, and that if f is a common eigen function for all Hecke operators, then

$$f \in SS_k(\Gamma) \iff C(\mathfrak{U}) = C({}^{\sigma}\mathfrak{U}) = \dots = C({}^{\sigma^{k-1}}\mathfrak{U})$$
 for any integral ideal \mathfrak{U} .

Our purpose is to show that this subspace $\mathrm{SS}_k(\Gamma)$ is closely related with spaces of cusp forms of one variable, in fact, this subspace can be lifted from spaces of cusp forms of one variable.

Let $S_k(SL_2(\underline{Z}))$ be the space of cusp forms of weight k with respect to $SL_2(\underline{Z})$. Let us introduce other spaces of cusp forms of one variable. From the condition on F, it follows that there exist $\ell-1$ characters mod q of order ℓ corresponding to the extension F/Q in the sense of class field theory. We denote them by χ_i , $1 \le i \le \ell-1$. For each character χ_i , we denote by $S_k(\Gamma_0(q),\chi_i)$ the space of cusp forms g which satisfy

$$g(\gamma Z) = (cZ + d)^k \chi_i(d) g(Z)$$
 for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(q)$,

where

$$\Gamma_0(q) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\underline{Z}) , c \equiv 0 \mod q \} .$$

The Hecke ring $R(\mathfrak{u}_{\underline{\mathbb{Q}}}$, $GL_2(\underline{\mathbb{Q}}_{\underline{\mathbb{A}}}))$ acts on these spaces of cusp forms. On $S_k(SL_2/\underline{\mathbb{Z}})$, it acts in the usual manner. On the other spaces, we make it act in the following way. For a prime p, let T(p) and T(p,p) be the elements of $R(\mathfrak{u}_{\underline{\mathbb{Q}}}, GL_2(\underline{\mathbb{Q}}_{\underline{\mathbb{A}}}))$

given in the next section. For $p \neq q$, T(p) and T(p, p) acts in the usual manner. For p = q, we define the action of T(q) and T(q, q) on $S_k(\Gamma_0(q), \chi_i)$ by

 $T(q) g = g | [\Gamma_0(q) \begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix} \Gamma_0(q)]_{k,\chi_{\underline{i}}} + g | [\Gamma_0(q) \begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix} \Gamma_0(q)]_{k,\chi_{\underline{i}}}^*,$ $T(q, q) g = q^{k-2} g,$

where $\left[\Gamma_0(\mathbf{q})\begin{pmatrix} 1 & 0 \\ 0 & \mathbf{q} \end{pmatrix}\Gamma_0(\mathbf{q})\right]_{k,\chi_i}$ is the action of the double coset $\Gamma_0(\mathbf{q})\begin{pmatrix} 1 & 0 \\ 0 & \mathbf{q} \end{pmatrix}\Gamma_0(\mathbf{q})$ defined in G. SHIMURA [10], and $\left[\begin{array}{c} \mathbf{k} \\ \mathbf{$

THEOREM. - If k > 4, there exists a subspace S of $\bigoplus_{i=1}^{k-1} S_k(\Gamma_0(q), \chi_i)$ such that

$$\mathrm{SS}_{\mathbf{k}}(\Gamma) \simeq \mathrm{S}_{\mathbf{k}}(\mathrm{SL}_2(\underline{\mathbf{Z}})) \oplus \mathrm{S}$$
 ,

 $(\underline{\text{and}} \ \bigoplus_{i=1}^{\ell-1} S_k(\Gamma_0(q), \chi_i) \simeq S \oplus S) \underline{\text{as}} \ R(u_F, GL_2(F_A))-\underline{\text{modules}}.$

Let $g \in S_k(SL_2(\underline{Z}))$ be a common eigen function for all Hecke operators and let $f \in SS_k(\Gamma)$ be a common eigen function for all Hecke operators which corresponds to g in the above isomorphism, then it holds the following relation between the associated Dirichlet series ϕ_g of g and Φ_f of f, namely,

$$\Phi_{\mathbf{f}}(\mathbf{s}) = \varphi_{\mathbf{g}}(\mathbf{s}) \prod_{i=1}^{\kappa-1} \varphi_{\mathbf{g}}(\mathbf{s}, \chi_{i}),$$

where

$$\varphi_g(s, \chi_i) = \sum_{n=1}^{\infty} a_n \chi_i(n) n^{-s}$$
 for $\varphi_g(s) = \sum_{n=1}^{\infty} a_n n^{-s}$.

This theorem can be considered an analogue for automorphic forms of the decomposition theorem of Dedekind zeta-functions.

The above theorem can be derived easily from the following theorem on trace of Hecke operators.

THEOREM. – If $k \gg 4$,

$$\operatorname{tr} \, \operatorname{T}(e)/\operatorname{SS}_{k}(\Gamma) = \operatorname{tr} \, \operatorname{T}(\lambda(e))/\operatorname{S}_{k}(\operatorname{SL}_{2}(\underline{Z})) + \frac{1}{2} \sum_{i=1}^{k-1} \operatorname{tr} \, \operatorname{T}(\lambda(e))/\operatorname{S}_{k}(\Gamma_{0}(q), \chi_{i})$$

for any $e \in R(\mathfrak{U}_F, GL_2(F_A))$, where $\operatorname{tr} T(e^*)/^*$ is the trace of $T(e^*)$ on the space *.

Remark. - The above theorem is a generalization and a refinement of the result of

K. DOI and H. NAGANUMA ([2], [6]), which treated the lifting for quadratic extensions. H. JACQUET [3] studied the lifting for quadratic extensions from the view point of representation theory. Alternative proofs for K. DOI and H. NAGANUMA's result are given by D. ZAGIER [12] and S. KUDLA [4]. T. ASAI [1] treated the lifting in the case of imaginary quadratic extensions over Q.

2. - In this section, we give the definition of $\ \lambda$. Since it is known that

$$\begin{array}{l} \mathtt{R}(\mathfrak{U}_{\mathtt{F}} \text{ , } \mathtt{GL}_{2}(\mathtt{F}_{\mathtt{A}})) = \bigotimes_{\mathfrak{p}} \mathtt{R}(\mathtt{GL}_{2}(\mathfrak{O}_{\mathfrak{p}}) \text{ , } \mathtt{GL}_{2}(\mathtt{F}_{\mathfrak{p}})) \text{ ,} \\ \mathtt{R}(\mathfrak{U}_{\mathtt{Q}} \text{ , } \mathtt{GL}_{2}(\underline{\mathtt{Q}}_{\mathtt{A}})) = \bigotimes_{\mathfrak{p}} \mathtt{R}(\mathtt{GL}_{2}(\underline{\mathtt{Z}}_{\mathfrak{p}}) \text{ , } \mathtt{GL}_{2}(\underline{\mathtt{Q}}_{\mathfrak{p}})) \text{ ,} \end{array}$$

it is enough to define a homomorphism $\lambda_{\mathfrak{p}}$ from $R_{\mathfrak{p}}=R(\operatorname{GL}_2({}^{\mathfrak{O}}_{\mathfrak{p}})$, $\operatorname{GL}_2(F_{\mathfrak{p}}))$ to $R_{\mathfrak{p}}=R(\operatorname{GL}_2({}^{\mathfrak{Q}}_{\mathfrak{p}})$, $\operatorname{GL}_2({}^{\mathfrak{Q}}_{\mathfrak{p}}))$ for each prime ideal \mathfrak{p} of F, where \mathfrak{p} is a prime such as $\mathfrak{p}|\mathfrak{p}$. Let $T(\mathfrak{p})$ and $T(\mathfrak{p}$, $\mathfrak{p})$ (resp. $T(\mathfrak{p})$ and $T(\mathfrak{p}$, $\mathfrak{p})$) be the elements of $R_{\mathfrak{p}}$ (resp. $R_{\mathfrak{p}}$) given by the double cosets

ments of R_p (resp. R_p) given by the double cosets
$$\frac{\operatorname{GL}_2(\mathfrak{O}_{\mathfrak{p}}) \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \operatorname{GL}_2(\mathfrak{O}_{\mathfrak{p}}) \text{ and } \operatorname{GL}_2(\mathfrak{O}_{\mathfrak{p}}) \begin{pmatrix} \pi & 0 \\ 0 & \pi \end{pmatrix} \operatorname{GL}_2(\mathfrak{O}_{\mathfrak{p}}) }{}$$

(resp. $GL_2(Z_p)$ $\binom{1}{0}$ p $GL_2(Z_p)$ and $GL_2(Z_p)$ $\binom{p}{0}$ p $GL_2(Z_p)$ respectively, where π is a prime element of ${}^{\circ}p$. We denote by $R_p^{\mathbf{I}}$ (resp. $R_p^{\mathbf{I}}$) the subring of R_p (resp. R_p) generated by $T(\mathfrak{p})$ and $T(\mathfrak{p},\mathfrak{p})$ (resp. $T(\mathfrak{p})$ and $T(\mathfrak{p},\mathfrak{p})$). If we put

$$T(p) = X + Y$$
 $T(p) = x + y$
 $T(p, p) = NpXY$ $T(p, p) = pxy$

we can embed R_p (resp. R_p) into the polynomial ring Q[X,Y] (resp. Q[x,y]) of two variables over Q. Now, consider the mapping from Q[X,Y] to Q[x,y] given by

$$X \longmapsto x^{f}$$
,
 $Y \longmapsto y^{f}$,

where f is an integer such that $N\mathfrak{p}=p^f$. Then we see easily that this mapping can be extended to a homomorphism from R_p to R_p .

3. — On this section, we give a numerical example of our theorem. We take as F the maximal real subfield of 7-th root of unity , then [F:Q]=3 , and F satisfies the condition in § 1 . Let χ be the character mod 7 of order 3 given by $\chi(3)=\omega$, $\omega=(-1+\sqrt{-3})/2$. For k=4 , we have $\dim S_4(\Gamma)=1$ and $\dim S_4(\Gamma_0(7),\chi)=1$. In this case, the subspace $SS_4(\Gamma)$ coincides with $S_4(\Gamma)$, hence $S_4(\Gamma)$ is isomorphic to $S_4(\Gamma_0(7),\chi)$ as $R(\mathfrak{U}_F, \operatorname{GL}_2(F_A))$ -modules. Let f (resp. g) be an element of $S_4(\Gamma)$ (resp. $S_4(\Gamma_0(7),\chi)$) with the associated Dirichlet series

$$\Phi_{\mathbf{f}}(\mathbf{s}) = \sum C(\mathbf{u}) \ \mathbf{N}\mathbf{u}^{-\mathbf{s}} \ (\mathbf{resp.} \ \varphi_{\mathbf{g}}(\mathbf{s}) = \sum_{n=1}^{\infty} \mathbf{a}_n \ \mathbf{n}^{-\mathbf{s}}).$$

We may assume C(0) = 1 and $a_1 = 1$. Then our theorem asserts that it holds the

following relation between $\,{\tt C}({\tt p})\,\,$ and $\,a_{\tt p}^{}$, namely

$$C(p) = \begin{cases} a_p & (p) = pp' p'' \\ a_p^3 - 3\chi(p) p^3 a_p & (p) = p \\ a_p + \overline{a}_p & (p) = p^3 \end{cases},$$

where p, p', p'' are the distinct prime divisors of (p). This relation can be checked for several p and p. The coefficients a_p can be calculated by Eichler-Selberg's trace formula using the class numbers of imaginary quadratic fields. On the other hand, C(p) can be obtained by Shimizu's trace formula [8] using the class numbers of totally imaginary quadratic extensions of F. For example, to calculate C((2)), we need the following class numbers.

$$h(F(\sqrt{-8})) = 1$$
, $h(F(\sqrt{-7})) = 1$, $h(F(\sqrt{\alpha^2 - 8})) = 1$, $h(F(\sqrt{\alpha^2 + 2\alpha - 7})) = 1$.
Here $h(K)$ is the class number of K and α is a root of the equation
$$X^3 + X^2 - 2X - 1 = 0$$
.

On this way, we have the following table.

p	$\chi(p)$	a p	p	C(p)
2	w ²	2ω	(2)	- 40
3	ω	$7\omega^2$	(3)	- 224
7	0	7 - 14w	(2 - α)	28
13	1	- 14	$(\alpha^2 + 1)$	- 14
29	1	58	$(3 - \alpha)$	58

4.1. — Let F be as in § 1, and U an integral ideal of F such as ${}^{\sigma}$ U = U, then we can define a subspace $SS_k(\Gamma_0(\mathfrak{U}))$ of $S_k(\Gamma_0(\mathfrak{U}))$ in the same way as in § 1, where $\Gamma_0(\mathfrak{U})=\{\binom{a}{c}\ d^{\circ}\in\Gamma$, $c\equiv 0 \mod \mathfrak{U}\}$, and we can prove a similar but more complicated result on this $SS_k(\Gamma_0(\mathfrak{U}))$. Also, in the case of definite quaternion algebras, we can consider a similar problem, and the case where $\ell \geqslant 3$ has been treated by H. HIJIKATA. In the case of quadratic extensions, we can prove the following. Let F be $Q(\sqrt{q})$ with a prime q , q $\equiv 1 \mod 4$, and B a definite quaternion algebra over Q which ramifies at q and at the archimedean prime. Let R be a maximal order of B \otimes F which satisfies ${}^{\sigma}R=R$, where σ is the generator of Gal(F/Q). For a non-negative even integer k , let M(id, $\{k$, $k\})$ be the space of continuous functions on $(B \otimes F)_A^{\times}$ defined in H. SHINIZU [8] with respect to the open subgroup Π_p $R_p^{\times} \times \Pi_v$ $(B \otimes F)_v^{\times}$ of $(B \otimes F)_A^{\times}$. We can define the action of T_{σ} on M(id, $\{k$, $k\})$ by means of the action of σ on $(B \otimes F)_A$, and in these notations we can prove the following theorem.

THEOREM. - For any
$$e \in \bigotimes_{\mathfrak{p} \neq \mathfrak{q}} R(R_{\mathfrak{p}}^{\times}, (B \otimes F)_{A}^{\times})$$
, it holds

$$\label{eq:tr_T_alpha} \text{tr } T(e) \ T_{\sigma} / \text{M(id , $\{k \text{ , }k\}$)}$$

$$= - \operatorname{tr} T(\lambda(e)) / S_{k+2} (SL_2(\underline{Z})) + \frac{1}{2} \operatorname{tr} T(\lambda(e)) / S_{k+2} (\Gamma_0(q), (\overline{q})) ,$$

where q is the prime ideal such as $q^2 = (q)$ and (\overline{q}) is the quadratic residue symbol mod q.

4.2. - The theorem in § 1 has been generalized from the view point of representation theory by T. SHINTANI [11] and R. P. LANGLANDS [5] by a similar method as ours. Especially, R. P. LANGLANDS found an important application of his generalization of our theorem to the conjecture of Artin on the poles of Artin's L-functions.

REFERENCES

- [1] ASAI (T.). On the Doi-Naganuma lifting associated with imaginary quadratic fields (à paraître).
- [2] DOI (K.) and NAGANUMA (H.). On the functional equation of certain Dirichlet series, Inventiones Math., t. 9, 1969, p. 1-14.
- [3] JACQUET (H.). Automorphic forms on GL(2). Berlin, Springer-Verlag, 1972 (Lecture Notes in Mathematics, 287).
- [4] KUDLA (S.). Theta-functions and Hilbert modular forms (à paraître).
- [5] LANGLANDS (R. P.). Base change for GL(2) (à paraître).
- [6] NAGANUMA (H.). On the coincidence of two Dirichlet series associated with cusp forms of Hecke's "Neben"-type and Hilbert modular forms over a real quadratic field, J. Math. Soc. Japan, t. 25, 1973, p. 547-555.
- [7] SAITO (H.). Automorphic forms and algebraic extensions of number fields, Lectures in Mathematics, Dept of Math., Kyoto University (à paraître).
- [8] SHIMIZU (H.). On zeta functions of quaternion algebras, Annals of Math., t. 81, 1965, p. 166-193.
- [9] SHIMURA (G.). On Dirichlet series and abelian varieties attached to automorphic forms, Annals of Math., t. 76, 1962, p. 237-294.
- [10] SHIMURA (G.). Introduction to the arithmetic theory of automorphic functions. Princeton, Princeton University Press, 1971 (Publications of the Mathematical Society of Japan, 11).
- [11] SHINTANI (T.). On lifting of holomorphic automorphic forms, "United-States Japan seminar on application of automorphic forms to number theory [1975. Ann Arbor]" (à paraître).
- [12] ZAGIER (D.). Modular forms associated to real quadratic fields, Inventiones Math., t. 30, 1975, p. 1-46.

(Texte reçu le 21 janvier 1977)

Hiroshi SAITO
Mathematisches Institute
Universität
D-5300 BONN
(Allemagne fédérale)