SÉMINAIRE DELANGE-PISOT-POITOU. Théorie des nombres

JEAN LAGRANGE

Sur le cuboïde entier

Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 17, n° 2 (1975-1976), exp. n° G1, p. G1-G5

http://www.numdam.org/item?id=SDPP_1975-1976__17_2_A8_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres (Secrétariat mathématique, Paris), 1975-1976, tous droits réservés.

L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

13 octobre 1975

SUR LE CUBOÏDE ENTIER

par Jean LAGRANGE

1. Introduction.

Le problème de trouver un cuboïde (i. e. un parallélépipède rectangle) dont les arêtes, les diagonales des faces et la diagonale intérieure sont mesurées par des nombres entiers est très ancien et n'a pas reçu de solution. Inversement, on ne sait pas montrer qu'un tel cuboïde n'existe pas.

Soient x, y, z les longueurs des arêtes, u, v, w les longueurs des diagonales des faces, t la longueur de la diagonale intérieure; on doit résoudre le système diophantien:

$$\begin{cases} y^2 + z^2 = u^2, & z^2 + x^2 = v^2, & x^2 + y^2 = w^2 \\ & x^2 + y^2 + z^2 = t^2 \end{cases}$$

Si on supprime une condition, les trois problèmes obtenus ont chacun une infinité de solutions.

Problème I : Les arêtes et les diagonales des faces sont entières.

$$I\{y^2 + z^2 = u^2, z^2 + x^2 = v^2, x^2 + y^2 = w^2.$$

Problème II: Les arêtes, deux des diagonales des faces et la diagonale intérieure sont entières.

II
$$\begin{cases} y^2 + z^2 = u^2, & z^2 + x^2 = v^2 \\ x^2 + y^2 + z^2 = t^2. \end{cases}$$

Problème III : Deux des arêtes, les diagonales des faces et la diagonale intérieure sont entières.

III
$$\begin{cases} y^2 + z = u^2, & z + x^2 = v^2, & x^2 + y^2 = w^2 \\ & x^2 + y^2 + z = t^2. \end{cases}$$

Les solutions numériques seront toujours écrites sous forme primitive, et seront classées suivant la longueur de la diagonale intérieure.

Pour les solutions paramétriques, il est plus commode de supposer que les inconnues sont des entiers relatifs à l'exception de Z qui doit être positif.

Le tableau ci-après donne la plus petite solution numérique de chaque problème.

Pb	х	У	Z	t	
I	44	117	240	$\sqrt{73225}$ = 270,6	
II	153	672	104	697	
III	520	576	$\sqrt{618849}$ = 786,7	1105	

2. Le problème I.

C'est celui qui a été le plus étudié. Les références anciennes se trouvent dans DICKSON ([2], chap. XIX). KRAÏTCHIK [3] fait une étude très détaillée de ce problème.

Rappelons simplement que :

(a) si
$$\alpha^2 + \beta^2 = \gamma^2$$
, une solution du système I est:

$$\begin{cases} x = \alpha(4\beta^2 - \gamma^2), & y = \beta(4\alpha^2 - \gamma^2), & z = 4\alpha\beta\gamma \\ u = \beta(4\alpha^2 + \gamma^2), & v = \alpha(4\beta^2 + \gamma^2), & w = \gamma^3 \end{cases}$$

(b) si x , y , z est une solution du système I, yz , zx , xy est une autre solution.

SPOHN [5] montre que (a) ne peut pas fournir de cuboïde entier. Par la même méthode, on peut montrer que la solution fournie à l'aide de (a) et (b) ne peut pas fournir de cuboïde entier.

LAL et BLUNDON [4] donnent 130 solutions numériques. La plus petite solution a été rappelée dans l'introduction.

3. Le problème II.

Le seul travail que nous connaissions est celui de RIGNAUX (Réf. 29 de [2], chap. XIX) qui donne cinq solutions paramétriques.

Le résultat suivant semble nouveau.

Soit x , y , z ; u , v ; t une solution du système II ; une autre solution est xy , uz , xz ; zt , xu ; uv (la vérification est immédiate). Par itération, on obtient trois autres solutions, à savoir :

Donc les solutions du problème II se groupent par cinq :

4. Le problème III.

Le seul travail que nous connaissions est celui de BROMHEAD [1] qui donne une solution paramétrique.

Omettant la condition Z > 0, le système III est équivalent à :

III!
$$\begin{cases} x^2 + u^2 = y^2 + v^2 = t^2 \\ x^2 + y^2 = w^2 \end{cases}$$

La solution suivante semble plus simple que celle de BROMHEAD.

Si $\alpha^2 + 5\beta^2 = \gamma^2$, une solution du système III' est

$$\begin{cases} x = 4\alpha \gamma \beta^{2} & y = (\alpha^{2} + 4\beta^{2}) 2\alpha \beta \\ u = 4\beta^{4} - \alpha^{2} \gamma^{2} & v = (\alpha^{2} + 4\beta^{2})(\alpha^{2} - \beta^{2}) \\ w = 2\alpha \beta(\alpha^{2} + 6\beta^{2}) & t = (\alpha^{2} + \beta^{2})(\alpha^{2} + 4\beta^{2}) \end{cases}$$

La vérification n'offre pas de difficulté ; la condition Z > 0 est réalisée si on prend 0 < 2 β < α ou 0 < $\alpha\gamma^2$ < $2\beta^3$.

 $\alpha=1$, $\beta=4$, $\gamma=9$ donnent la plus petite solution numérique. La vérification a été faite sur un calculateur de bureau (1). La plus petite solution du système III! est :

$$65^2 = 63^2 + 16^2 = 60^2 + 25^2$$
 $63^2 + 60^2 = 87^2$.

Elle provient après simplification par 8 de $\alpha = 2$, $\beta = 3$, $\gamma = 7$.

5. Solutions numériques du problème II.

Pour rechercher sur ordinateur un cuboïde entier, la méthode consiste à écrire un grand nombre de solutions d'un des trois problèmes, et à regarder si la condition manquante est satisfaite. Il semble préférable d'utiliser le problème II car on peut obtenir plus facilement un grand nombre de solutions.

Pour écrire des solutions du problème II (comme d'ailleurs du problème I ou MI) on utilise le théorème de SPOHN [5].

⁽¹⁾ Programma 602 d'Olivetti. En fait c'est à partir de cette solution numérique que la solution paramétrique a été obtenue.

Si x, y, z, u, v sont des entiers tels que $y^2 + z^2 = u^2$, $x^2 + z^2 = v^2$, il existe des entiers a, b, c, d tels que $xd = a(b^2 - c^2)$, $yd = b(a^2 - c^2)$, zd = 2abc.

<u>Preuve</u>. - Il suffit de prendre a = u + y, b = v + x, c = z, et on trouve d = 2ab.

Il reste à écrire la condition $x^2 + y^2 + z^2 = t^2$ qui prend la forme $(a^2 + b^2)(c^4 + a^2 b^2) = (dt)^2$.

Nous avons aussi écrit avec l'ordinateur I. B. M. 370.168 du CIRCE, plus de 1000 solutions numériques du problème II. Aucune n'a fourni un cuboïde entier. Les premières solutions sont rassemblées par groupe de cinq dans la table ci-jointe.

BIBLIOGRAPHIE

- [1] BROMHEAD (T.). On square sums of squares, Math. Gazette, t. 44, 1960, p. 219-220.
- [2] DICKSON (L. E.). History of the theory of numbers, vol. 2: Diophantine analysis. New York, Chelsea Publ., 1952 [reprinted from the (1920) edition by Carnegie Institutions of Washington].
- [3] KRAÏTCHIK (M.). Théorie des nombres. Tome 3: Analyse diophantienne et applications aux cuboïdes rationnels. Paris, Gauthier-Villars, 1947.
- [4] LAL (M.) and BLUNDON (W. J.). Solutions of the diophantine equations $x^2+y^2=l^2$, $y^2+z^2=m^2$, $z^2+x^2=n^2$, Math. of Comp., t. 20, 1966, p. 144-147.
- [5] SPOHN (W. G.). On the integral cuboid, Amer. math. Monthly, t. 79, 1972, p. 57-59.

Solutions numériques du problème II

x	У	z	t	x	У	Z	t
153	672	104	697	1428	2640	1771	3485
520	756	117	925	2880	4301	1932	5525
533	3360	756	3 485	6601	8976	40 32	11849
1665	4264	6048	7585	5460	10 <i>3</i> 73	6336	13325
2405	12852	87 <i>3</i> 6	15725	9792	10465	12144	18785
448	495	840	1073	840	1364	3627	3965
264	952	495	1105	2464	3 0225	6552	3 1025
264	975	448	1105	34100	92781	7 <i>3</i> 92	99125
7616	1 6095	3 960	18241	12320	145197	5 3 196	155125
32175	60088	14784	69745	208488	9587 <i>3</i> 7	76 <i>3</i> 84	984113
644	2040	333	2165	819	<i>3</i> 740	1680	4181
16095	87584	45288	99905	7293	7476	14960	18245
48063	281112	87584	298337	7293	16400	3276	18245
93380	144189	26 <i>2</i> 752	31 3 925	72891	33 4480	1 45860	3 72 1 09
229437	4 <i>3</i> 7920	71484	499525	351204	766700	153153	857105
1092	1540	1881	2665	2275	2772	2640	4453
5236	7011	2 3 52	9061	9555	13940	11088	20213
3920	1 0659	4788	12325	9555	15312	9100	20213
12180	25707	8624	297 25	80388	89060	47775	129137
10192	24795	17556	32045	1585675	2351184	1261260	3103741
1925	2052	1680	3277	3404	4653	1680	6005
9405	10220	8208	16133	692580	1319901	476560	1564901
9405	10608	7700	16133	531440	1319901	651420	1564901
140525	157296	112860	2 3 9221	2522100	3 2 3 0 3 96	3 95970 3	5698745
453492	458780	329175	724217	33 6 2800	7676797	5279604	9902245
2261	2640	252	3485	357	6960	1276	7085
468	4180	3 99	4225	2915	4284	15312	16165
861	6864	5852	9061	21420	77836	3927	80825
1476	8645	10032	13325	15587	84912	4284	86437
1365	14212	1584	14365	94605	1 808092	496944	1877525

(Texte reçu le 14 octobre 1975)

Jean LAGRANGE Faculté des Sciences, Mathématiques Boîte postale 347 51062 REIMS CEDEX