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SOME APPLICATIONS OF LINEAR FORMS IN LOGARITHMS

by T. N. SHOREY

Seminaire DELANGE-PISOT-POITOU
(Théorie des nombres)
17e année, 1975/76, n° 3, 8 p. 20 octobre 1975

1. Introduction.

I shall describe some applications of the following result on linear forms in lo-

garithms of algebraic numbers.

be an integer. Let a~ , ~ , , , an be non-zero algebraic numbers of

heights less than or equal to A~ , ... , A , where each Ai. exp e . Let
03B21 , ..., 03B2n-1 denote algebraic numbers of heights less than or equal to B

( z exp e) . Suppose that cx , ..., 03B1n and 03B21 ,..., 03B2n-1 all lie in a field

of degree D over the rationals. Set

THEOREM 1. - Given e > 0 , there exists an effectively computable number C > 0

depending only on E such that either

vanishes or exceeds

This was proved by the author in [24]. It has been assumed that the logarithms

have their principal values, but the result would hold for any choice of logarithms

if C were allowed to depend on their determinations, The crucial point in the

theorem is the explicit and good dependance of the lower bound on n and D . A

result of this type (with every parameter explicit) was proved, for the first time,
by BAKER [2’], which was improved with respect to n by RAMACHANDRA [17].

2. Greatest prime factor of a polynomial.

Let f be a polynomial with integer coefficients and at least two distinct rootsc

Denote by Pen] the greatest prime factor of the integer n . SIEGEL [26] genera-
lised earlier results of TRUE and POLYA by proving that tends to

infinity with n . However the result of SIEGEL was not effective. Effective ver-

sions of Siegel’s result were given by CHOWLA, MAHLER and NAGELL for polynomials of

the type A:x2 + B, Ax3 + B where A and B are integers. By proving a p-adic

analogue of Baker’s effective estimate on the magnitude of the integral solutions

of Thue’s equation, COATES [4J gave an effective version of Siegel’s result for all

polynomials f of degree > 3 . In fact COATES proved that



This result has been improved to

Here the constants implied by » are effectively computable and depend only on

f . SCHINZEL [22] proved (1) for all polynomials f of degree 2 by using a

p-adic measure of irrationality of the ratio of two logarithms of algebraic num-

bers. It follows from the results of KEATES [ ~,2~, proved with the help of Ba.ker’s
effective estimate on the magnitude of the integral solutions of 

that (1) holds for all polynomials f of degree 3 . Finally, SPRINDUK [271 and

KOTOV [ 13~] proved (i) for all polynomials f of degree at least 4 . Their method

is p-adic. TIJDEMAN and the author [25 It gave another proof of the inequality (1).
The proof is different in the sense that it is not p-adic. It depends on theorem

1.

Further we proved the following generalization 

THEOREM 2. - Let f be a polynomial with integer coefficients and at least two

distinct roots. Let A > 0 . Then for every natural numbers X (> exp e) and Y

with

there exists an effectively computable number e > 0 depending only on A and f

such that

We write log X for log log x and log.. X for log log log X . ERDÖS [5]
gave a lower bound for 

Let us consider the case when f is a linear polynomials On applying theorem 2
to f(x) = 2x(2x db 1) , we obtain the following corollary.

COROLLARY. - For all natural numbers X (> exp e) and Y satisfying

we have

(2)

where s > 0 is a constant depending only on A .

Recently, LANGEVIN [14] obtained (2) for fixed Y with e == (8 + 5)"~ ~ 6 > 0

and X = X~(Y , 5) .

ERDSS and the author [91 proved (2) with Y « X) . For larger values of
Y ~ the corollary gives an improvement on the earlier published results  In view of

the work of RAMACHANDRA and the author [ 18 ], JUTILA L 11] and the author [ 23], we
have



~

for exp e  Y :S X2/3 . When Y > X2/3 and X  Xo where Xo is some absolute

constant , it follows from well-known results on difference between consecutive

primes that

For earlier results in the direction of inequality (3) , see RAMACHANDRA and the

author [18].

3. The greatest prime factor of a - b

It was conjectured by ERDÖS ([6], p. 218) that PC 2n -- l]/n tends to infinity

with n . The elementary result Pea - b ] > n when n > 2 and a > b > 0 was

proved by ZSIGMONDY [30] and the result was rediscovered by BIRKHOFF and VANDIVER

[ 3*]. It was improved by SCHINZEL [21] ; he showed that P[an - bn] > 2n if ab is

a square or twice a square provided that one excludes the cases n = 4 , 6 , 12

when a = 2 ~ To == 1 .

For any positive integer n and relatively prime integers a > b > 0 , we denote

by b) the n-th cyclotomic polynomial ; that is

where § is a primitive n-th root of unity. We shall write, for brevity,

STEWART [28] proved the following theorem.

THEOREM 3. - For any x with 0  ~,  (log 2~-~ and any integer n (> 2) with

at most )( log log n distinct prime factors, we have

where f is a function, strictly increasing and unbounded, which can be specified

explicitly in terms of a, b and X.

The proof of theorem 3 depends on a result of Baker on linear forms in logarithms

of algebraic numbers. If that is replaced by theorem 1 in the proof of Stewart for

theorem 3, then one can prove the theorem with

where A = 1 - X log 2 and c - c 1 (a , b , x) is an effectively computable cons-

tant.

Let us consider the case when a = 2 J b = 1 and n = p a prime. Then (4)
gives



for every E > 0 . proved (5) with the lower bound p( log p~ .
ERDSS and the author [9J improved the lower bound of (5) to constant times

p log p . Further ERDSS and the author [9] strengthened the conclusion of inequali-
ty (5) f o r almo st al l primes p .

THEOREM 4. - For almost all primes p

For a slightly stronger version of theorem 4, see ~9 ~. The proof depends on
theorem 1 and Brun’s Sieve method.

4. The number of distinct prime factors of a block of consecutive integers.

Denote by (n) the number of distinct prime factors of the integer n . A

weaker form of a conjecture of ~0 j is as follows : Let n and g be natu-

ral numbers. If all the numbers (n + ... , (n + g) are composite, then

c~~ (n + l) ... (n + g~ ~ ~ g . A consequence of this conjecture is that

f or large n . See ERDÖS and Here pn denotes the n-th prime.

RAMACHANDRA, TIJDEMAN and the author [ 19] proved the following result.

5. - There exists an effectively computa’ble constant c2 > 0 such that

for all positive integers n and g with

Theorem 5 follows immediately from the following.

THEOREM 6. - Let u and k ~~ 2) be positive integers. Then there exists an

effectively computable constant c3 > 0 such that if 
_

then the number N of numbers among (u + 1) , .. , , (u + k) whose all prime fac-

tors are less than or equal to k does not exceed 

Let E > 0 . If u > exp k~ , then theorem 1 can be used to improve the bound of

theorem 6 for N as follows :

See the author [24]. For a weaker version of this result, see RAMACHANDRA [17].
Let B > 0 . It follows immediately from (6) that for 1  g  (log n)B ,



where c = c (B) > 0 is a constant. ERDSS and SELFRIDGE [7~] defined

where

ERDÖS and SELFRIDGE [7] conjectured that f(n) --> co as n -> oo . This seems

very hard to prove. The inequality (7) shows that f(n) > 1 for n > nO where

nO is a large constant. Indeed this can be obtained from a weaker version of ine-

quality (6) which is due to RAMACHANDRA [17].

5. Gap between numbers which have the same greatest prime factor or have the same

prime factors.
Let exp e  a  b be integers. Suppose that = P[b] . Then TIJDEMAN [29 ]

proved that

The proof of Tijdeman depends on Baker’s estimate on the magnitude of integral

solutions of Mordell’s equation y o = x3 + k . remark that the inequality (8) ,
apart from the constant, also follows from theorem 1. See ERDÖS and the author [9].
Suppose that for every prime p ’ pja if, and only if, Then, using theorem

. 1 ~ ERDdS and the author [9] proved that there exists a constant 6 > 0 such that

By using the work of STARK on y2 = x3 + k , LANGEVIN [l5] proved the above ine-
qual ity with 6 = i + e for every s > 0 .

6. Greatest prime factor of a convergent of a continued fraction of a real alge-
braic number.

Let a 4 Q be a real algebraic number. Denote by p /q , q > 0 , the n-th

convergent of the continued fraction of 03B1 . It follows from a result of MAHLER

[ 16 ~] that P[_p 
n c~~ tends to infinity with n . Further it follows from a result

of RIDOUT ~ 20 ~ that both and tend to infinity with n. However

these results were not effective. Baker’s first result ~ 1~ on linear forms in lo-

garithms of algebraic numbers gives an effective version of Mahler’s result. It

follows from theorem 1 that for n > 2

where c5 > o is an effectively computable constant depending only on o~ .

Proof of inequality (9). - It is no loss of generality to assume that n ~ nO
where na is a large positive constant depending only on of . Since n , we

have qn  n0 . Tye shall assume that the inequality



is satisfied for any 03B4 with 0  6  1 and arrive at a contradiction for a cer-

tain value of 03B4 depending only on a. By prime number theory, it follows that

First assume that c~ > 0 .

Write

where s~ ,..., sm , t~ i..., tm are primes b I ,..., bm are

non negative integers. Further the integers sl and t , do not exceed 6 log2 qn
and a~ s and s do not exceed c,- log qn where c6 and the subsequent
symbols c,~ ! c~ , .,. are positive constants depending only on a. It is well

Imown that

1, 8.

i. 3.

Here the logarithms have their principal values. Now apply theorem 1 with

n = 2m + 1 , D == 1 ,   (c log3 q ) , B . c6 log q and E : c log2 qn .
We get

Combining (10) and (11), we get

This is not possible if 8 == (2c ~)" and n > This completes the proof of

inequality (9) when a > 0 . If 03B1  0 , set 03B1 == - p with p > 0 . Now p  0 .

We have 0  - P - (pn/qn)|  1/q2n , i. e. (3  )P - ((- Pn)/qn)| (  1/q2n . Now
proceed similarly as above. This completes the proof of inequality (9).
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