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INTERSECTION NUMBERS OF CURVES

ON HILBERT MODULAR SURFACES

by Friedrich HIRZEBRUCH

Seminaire. ISOT-PO 

(Theorie des nombres)
17e année, 1975/76, n° 22, 3 p.&#x26; 15 mars 1.976

The lecture concerned joint work with D. ZAGIER which in the meantime has appaeared
under the title "Intersection nufibers of curves on Hilbert modular surfaces and mo-

dular forms of Nebentypus" [1].

We give here a short resume..

Let p = 1~ (mod 4) be a primer o the ring of integers of ~.(~ ), . The group

operates on the product of the upper half-place with itself by

The quotient is a non-compact complex surface X with finitely many quotient sin-

gularities. On X we define a series of curves T~, s ~ s. ~.’ as follows I given:

N , we consider all points ~2 , , z~3 E satisfying some equation of the form,

with a , b ~ Z , 03BB ~0 , 03BB03BB’ + abp = N ; this set is an invariant under SL2(O) , and

~N denote~s its image in X t The curves T anti T meet transversally if ~1 is

not a square. This assumed, the intersection and TN in X is given

by the following formula (Suppose that the exponent 03BD
p 
(N) of p in N is le ss or

equal to the exponent ~y { ~I~ of p in 1~~1 ~ .
p

and

Here. d ~ through those natural numbers such that - is a discriminant

and h is the class number with the understanding that h(-~ 4) ~- 1/2 , h~~- 3 ~ - 1/3 .

To prove the formula (1) which is one of the main: results of the paper we study
those points a on X which are special in the sense that there exist two curves



which meet transversally in 03B4 . For such a point 03B4 we a represen-

tative. ,, z~), and consider the hinary lattice ~;~ of all skew-hermitian

matrices.

with z~ + ~.z~ -- + b/p == 0 ? On ~: 9 we have. the binary quadratic form

which is positive definite,, has a discriminant divisible by p and represents only

quadratic residues modulo. p . It may have a content m > 1: (,content = greatest com-

mon divisor of all values taken by the quadratic form).. To prove (1~,~ we wish to
know how often a positive definite quadratic- form (p of discriminant ,~ -- 0 (mod p~ ~
and content m occurs as the quadrate form associated to a special point 3 
Let be the "number" of special points in X having a quadratic form which is

Z)-equivalent to cp . Then
. 

°

where ~a is the primitive form corresponding 

and. cp~ represents only quadratic residues (mod p), and X (,c~~) = - 1~ otherwise.

The number p (m) in (2) equals 03C0q|m (1 + (q)) if p 2 and is 0 if p2 | m: .

The proof of (1 ) by (2) is a complicated calculation using elementary facts or the

representation of binary quadratic forms by binary quadratic forms.

We also consider the compact surface X obtained. by adding to X the "cusps" and

resolving the singularities thus created. The compactification of the curve T~ re-

presents a cycle in the middle homology group H2 (X).. This group decomposes canani-

cally as the direct sum of the image of H2 (X), and the subspace generated by the
c.

homology cycles of the curves of the cusp resolution, we denote by T 
N 

the component

of T N in the f i~st summand. We wish to calculate the intersection number

in all cases (also when and TN have common components). For this, we need com-

plete information how the curves T pass through. the resolved cusps. The result is
the following. We assume again ~~ (~~~ : ~ ~~~"’} ~ Then

Interest in the intersection numbers arose f rom the classification problem for 
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bert modular surfaces where specials configurations of curves where needed. Later it

was conjectured that the are Fourier coefficients of modular forms. In fact,

the following holds. For N > C) , consider the Fourier series (q = exp 203C0iz)

This is a modular form for . 03930(p) of Nebentypus, indeed it belongs -to the subspa-

ce. x ) (,of. half the dimension), of modular forms having the property tha t
the N-th, Fourier coefficient is Q whenever (*") = - 1  The basic result due to’ 

r-
ZAGIER is that (4) is such a modular form for N = 1 . The result in general, then:

follows by the use of Hecke operators.

Because

the infinite, matrix TcN) has rank  [p + 19 24] . This implies c.lass number rela-
tions. Moreover, the natural map from the subspace of Hi(X, C) generated over C
by the T to r~ + ,~’ ~,p ),~ ,, x ) is and we conjecture it to be subjective,

or equivalently, we conjecture that the infinite matrix has rank equal to

[p + 19 24] . This has been verified by computer for p  200 .
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