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17-01

COMPUTING THE LOWER BOUND

FOR LINEAR FORMS IN LOGARITHMS

by Alfred J. van der POORTEN

Séminaire DELANGE-PISOT-POITOU

(Theorie des nombres)
17e annee, 1975/76, nO 1‘~~ ~ p. 2 février 1976

Denote by a~ , a2 ~ ... , c~n , n > 2 ! non zero algebraic numbers of degree
respectively not exceeding D and heights respectively not exceeding A~ ~..., An
where A 1  , ..  A n-1 = A’  A n = A . We shall write ... (log A n--1
and 03A9 = 03A9’ log A (It is convenient to suppose that log 2 , say, and

log 03A9’  1). Further by 03B20 , 03B21 , ... , 03B2n (03B2n ~ 0) , we denote algebraic 
bers of degree not exceeding D and heights not exceeding B ; in the event that

these coefficients be rational integers we denote by b ! ... , b 0) ra-
1 n n

tional integers of height not exceeding B ( It is convenient to suppose that, aay,

log B > ~ but the results cited are quite trivial unless B be considerably lar-

ger~. The above notation is used throughout in the sequel without further comment.

It is intended to briefly describe recent techniques whereby one obtains sharp
lower bounds for expressions of the shape it = b 

1 
log 03B11 + , , , + bn log an . It is

a trivial matter (see lemma 6 for details) to conclude that

On the other hand, any sharpening of the trivial inequality (1) in the variable
B is non trivial, and may have dramatic implications for a variety of problems in

number theory ; see , for example, the book BAKER ~ 8 ~, and the surveys 

~ 28~. will not consider applications here.

1. A brief comment on past results.

For the case n == 2 , derived non-trivial estimates of the following

, 
shape : there is A~ ~ E , D) such that for B > ]3~ and every

e > 0

Eventually this result was sharpened to = 2 (for details see, say, the 
,

book, Notice that although R is computable, it is not explicitly

specified in terms of A1 , A2 , and D .

In 1966, and then subsequent papers, BAKER ([1], [2], [3], [4]) revolutionised the
theory by extending Gel’fond’s method to the case of n > 2 logarithms, obtaining

bounds of the shape



for K > 11 + 1 , C == C(A1 , ... , An , D, n , n) > 0 effectively computable,

under the condition that either log cx~ , , .. , log c~n or ~~ ~ ... , P be li-

nearly independent over the rationals, or 03B20 ~ 0 . sharpened this

result to obtain the bound

for C == C~n ~ 1)) > 0 effect ively computable, provided that log ... ~ log an
be linearly independent over Q. This result is best possible in B ,

Subsequent results also display the dependence on each of ~ y ~ , , , ~ an in the

case of rational integer coefficients ; we write A = b1 log c~1 + ... + bn log n .
Then showed that

with C = C(A’ , n , D) > 0 , effectively computable, and TIJDEMAN [ 291 refined
this result to obtain C = C ’ (n , D)(log A’ ~n2+7n ~ BAKER [7~ also proved that

and recently, by combining the ideas of these papers, van der POORTEN C ~~ ~ obtained

Subject to the independence condition, that there be a prime q,

such that if K = ... ~ a ) then ... , K] = the
’~-’1 n 1 n

constant in (2) was computed by LOXTON and van der POORTEN [ 20 ]y to yield

It is the above results we propose to discuss. For comments on results of a some-

what different shape see say ~27~, also ~8~. Similarly, comment on recent results
for forms with algebraic coefficients may be found in [ 27], or see BAKER [6’], STARK

[26], SHOREY [ 24’]. Much sharper results are possible if all of 03B11 , ... , a n are

close to 1 ; see, say SHOREY L 23~,

There are p-adic analogues of the results mentioned. See SCHINZEL [22], for the
case n = 2 , COATES [12], SPRINDUK [ 2*5] and, in particular, KAUFMAN

~ 16~, who gives a result best possible in B in the general case of algebraic coef-

ficients. Recently, van der POORTEN [191 obtained the analogue of (2), namely, if
0 (mod p) ,

(3) 03B1b11 ... ... 03B1bnn - 1 > p 
p " ,

where b is a prime ideal of the field K . Subject to the same independence con-

dition mentioned above, it is shown in van der POOR~~~ ~ 2 ~. ; that one may take in

(3)



The explicit good dependence on ~ is particularly striking.

2. Outline of 

A description of the basic principles underlying the proofs of the propositions

mentioned may be found in TIJDEMM1 ~27~, and, in more precise detail, in the book,

BAKER ~8;. I will attempt to emphasise only those aspects that have led to the

recent refinements in the inequalities.

2.1 : To show that, say, A = 0 or exp(- C Q’ log ~’ log A log B) , one
commences by supposing, contrary to what one wishes to prove, that there do exist

rational integers b , ... , b (bn ~ 0 ) of heights not exceeding B such that

(3) 0  |b1 log + ... + b n log a n 1  exp(- CQ’ log 03A9’ log A log 
. 

B) .

One then constructs an appropriate exponential polynomial in n variables

where ~ ~..:~ r  n) , with rational integer coefficients

~. ~ ... , A. ) such th at ~ and many of its s partial derivatives are very
small at many points za - , .. - zn-l = 1 , 2 , 3 J ... , h . Actually, this vital

opening step introduces the grossest inefficiency into the argument, because we are

actually only interested in total derivatives of the function F(z) = ~(z,zi...,z~ ,
but we have no way of suitably estimating these derivatives except by way of partial
derivatives of $ along the diagonal ; the problem is the appearance of powers of

logarithms, and we have no way of coping with these until we obtain much deeper

results on the algebraic independence of logarithms.

The construction depends on noticing that

whence by the assumption (3) this difference is extremely small. Hence if one wants

partial derivatives of $ to be small on the diagonal, then it is good enough to

arrange that

for, say, z = 1 , 2 , ... ~ h and all non-negative integers ... , m sa-

tisfying mo + ... + m  M . One notices that the quantities in (4) are linear

forms in the unknowns q with algebraic coefficients. Taking into account that

each equation is in effect D equations with rational coefficients, we arrange
that we have ’ least twice as many unknowns, namely (H -h l) ... (ij + l)
unknowns q(~ ~ ~ ~ ... , X~) ~ as the number of equations to be satisfied, na-
mely roughly hDn Mn equations, and then the box principle allows us to solve the
system (4) so obtain integers 03BB1 , ... , 03BBn), not all zero, of the 

z
same order of size as the coefficients ( p/( p - mp);)z 03B31 ... 03B3n- 03B11 ... 03B1n .

~ 0 0 1 n20141 l n



2.2 : Unfortunately if one is seeking a bound sharp in A and B , then the pa-

rameters one has to choose force the said coefficients to be too large. Some stra-

tagems are required to deal with this problem, and it is these which materially in-

crease the apparent complexity of the argument in recent versions j~5~ L~~ E~~

[ 29] of the proof of Baker’s inequality. Firstly, z p, /(u.Q - is threate-

ningly larger and ruins the sharpness in B. To deal with this write

and further for any integers B ~ 0 , 0 denote by A(x ; h , X ~ the

derivative of (~(x ; 

Furthermore , notice that instead of the partial derivative

it is as convenient to always consider

Finally observe that the ~~ l ~ ~~ ~ ~’~ ~ ’~ l " ~ ~ ~ ’ ’~ ~ ~
Xj = 0 , 1 , ... , L0 are linearly independent over K and generate the powers

jj
i , x , ... , x 

° if M0  h(L0 + i ) .

Hence we can, throughout the argument, replace (writing L -1 + i = h)

by

This works efficiently by virtue of a lemma of TIJDEMAN ([29], lemma T1) which
tells us that if q and qx are positive integers then

I is a positive integer (where v(h) is the lowest common multiple of 1 , 2 , ... , h) ,

j and /(x ; h , X , ID~) S 4’~~~~~ , v(h) $ / ( actually even e~ ~°°~~~ ). This
/ lemma is quite critical in the most recent arguments.

We now solve for the integers p(X) = p(X , ... , I, ) , and these are of a sui-
-i n

table size relative to B .
m.

Secondly, the quantities 03B3i1 are too large relative to A . In the case of al-
i

gebraic coefficients 03B21 , ... , $, in the original form, there is no solution to

/ this d:ifficul ty, and we remain condemned to (log A) 1+~ in the bound (see BAKER

1 ) 16i) , at least for the present. But when we have integer coefficients b i ,... ,b n
then the quantities E(b y . ; m. ) are integers which are not too large (in effect

n i i

an entire m. I is eaten by this stratagem), but which strategically generate theI m
’ 

required quantities 03B3ii/mi! . It has become standard to write



whence the system (4), which we are to solve, becomes

Having solved the system (5) suitably, we obtain by virtue of (3) that the quan-
tities

are all very small, and this eventually gives us that the appropriate partial deri-

vatives of $ are suitably small.

2.3 : Now, we are actually not interested in $ at all, but only in its total

derivatives along the diagonal. easily see that along the diagonal the partial

~z , ... , z) for mo + ... + m ~ n 1 are generated

by the f ~ z ; ... , mn-l) with ... + H ; having made this obser-

vation (for details see lemma 8 of [ 19], or lemma 4 of [ 20 j) we need no longer con-
sider $ but will refer only to the functions f .

We now come to the first extrapolation argument. Here the basic idea is to trade

depth (number of derivatives) for length (number of points). One notices that
small ... , R and ... + implies

that f m (z ; m 0 ,... r m n- ~ ) is small for z -- 1 , ... , R ,

(here f (z) = --f f ~m) ~ Z ~ , and the argument goes by way of $ , as alluded tom m.

above). The extrapolation argument then shows that this implies that 
is small for z = 1 , ... , R’ (> R) and m~ + ... + mn-l  St « s) ; whence
g(z ; m ~ , 0 " , is small for these ranges of the parameters, so small

indeed that these algebraic numbers necessarily vanish. This completes an inductive

step, and one repeats the inductive step an appropriate number of times.

A number of remarks are in order. Firstly it should be emphasised that in the

extrapolation argument one makes explicit use of the analytic properties of the

functions f ; so one’s eventual result is a consequence of the underlying analytic

situation. Secondly, in order to gain by the extrapolation one needs R’ S’n > RSn
(at any rate in the sharper recent arguments ; it was customary to take S’ = 1 2 S
but as noted by SHOREY [24J and confirmed in [20], it seems more efficient to take

S ’ closer to S ).

2.4 : One now uses the data obtained from the extrapolation to perform inter-

polation, which allows one to conclude that for some suitable prime q one has

f ((Z~q) ; 0 m , ... , I , ... , hq and +...+ mn-l  ~ ~ M , is
small, and indeed g((z/q) ; ... , 0 for the indicated ranges of the

parameters.

Until recently (see for example BAKER [ 5]) one supposed that q > L . Then if



for each 03BBn , 0  03BBn  L . However, with the destruction of L , the equations
(7) now unravel and imply that -i 

f , , . , 03BBn) = 0 for all (n + 1)-tuples

(03BB-1 , ... , 03BBn) which is contrary to the original construction. Hence the condi-

tion on the field extension cannot hold and one must have ~ 1~ ~. E h.~~ T 1~ q , ... ,c~ 1~ ~
n 1 n-1

By arguments detailed in BAKER and STARK [ la~ this allows one to set up an induc-
tive chain in which one sequentially has the height A of 03B1n being reduced until

the result one wishes to prove is in fact implied by an earlier weaker result. The

alternative possibility is that g(z) vanishes identically not by virtue of the

vanishing of the but by virtue of a multiplicative relation between

03B11 , ... , a . In that case one reduces n inductively until for n = 1 the re-

sult to be proved is trivially the case.

2.5 : A recent innovation (BAKER [7J) has been to take q far smaller, which 
,

permits a bound of reasonable quality in ~’ . Now the extrapolation and interpola-
tion arguments detailed above become an inductive step in a process which reduces

L n stepwise from to L provided that s..., cx n 1~q ) : q n
(the argument of [20J follows this process in detail). The induction stops as soon
as N is such that q N exceeds L . This argument does cost the log Q’ which

appears in the bound obtained, but this is efficient indeed compared to the cost of

at least ~~tn+1 occasioned by the argument previously detailed. There is a compli-

cated and ingenious argument of BAKER j~7’] which copes with the possibility that

... , c~ ) : KJ  q" but this argument seems inefficient as regards the

variables n and D , and for this reason the arguments of [ 20] and [21] have been
left in their present incomplete state.

2.6 : The argument in the p-adic case is virtually identical with that appro-
priate to the complex case. The principal difference occurs in the extrapolation

and interpolation steps where the analytic character of the functions considered is

of relevance. Here one can invoke the Schnirelman integral which leaves the argu-

ment identical to the shape of the complex argument, but it seems both more appro-

priate and more efficient to use a technique specific to the p-adic case. The re-

levant ideas can be found in SCHINZEL [22], but the technique as introduced in

~ 1S ~, used in the present context and, considerably refined, in [ 21] owes
most to MAHLER [17]. The interesting problem peculiar to the p-adic case which I

_ 

want to mention here, is that 03B103B6 = exp(03B6 log 03B1) is a p-adic analytic function
. 
_ defined on the unit disc only if ~ ~ ~x .- ~ ~ y ~ 

p 
 Now one notices that without

j loss of generality i t may be supposed that c~~ , , , ~ , ~ are p-adic units, and



N -1

then one has ~ 1 i (mod p) (1  i  - n) , and this is the approach used in
BAKER and COATES [9] ; that is, one replaces the ai by, respective-

_1 
. This approach is not however efficient as regards the quality of the

bound relative to p , A careful reading of was alerted to this

source by a conversation with Kurt reminds one that if § is a primitive

p..th root of unity, where P = N - 1 , then for appropriate integers ri ,
0  r.  P , one already has 03B1i 03B6 ~ 1 (mod p) . A strategic use of this idea
does seem to be efficient and yielded the rather good quality of the bound, rela-

t ive to p, of [21]. : .

3. Concluding comments.

The intention of the preceding outline is to assist the reader in penetrating re-

cent proofs of Baker’s inequality. It is also more than just incidental that this

report emphasises the rapid developments in the field. Notwithstanding apparent
difficulties which seem to impede much further progress, it seems only reasonable

to suppose that further developments will be forthcoming. In particular it is

almost surely inefficient to prove general results which are to be applied in a

variety of contexts ; at this stage applications seem likely to be more suitably

approached by means of inequalities tailored to the specific case.

Even though recent p-adic results appear to be of the same quality as the cor-

responding complex results it seems to me that there are grossly unsatisfactory

aspects to the proofs presently employed. Put at its simplest, the proofs too clo-

sely follow the complex pattern. It is little wonder that there has been, by these

techniques, no penetration at all into deeper, truly p-adic problems. A notorious

instance is that (other than for experimental results) we seem to know very little

about 2p~~’ -» ~ j . It is perhaps useful to remark that it is this kind of problem
P

which is probably the obstruction to any attempt to remove the dependence on p

from the bound in the p-adic case of Baker’s inequality.

4. Recent news.

At the recent meeting on "Transcendence Theory and its Applications", at Cam-

bridge, it was announced that A. BAKER had proved for the most general case that

( 8 ) log ~i~’’ ’~n log ~’ log A(log B + log ~) )

with D) = c approximately 100 ) , has no solution in alge-
braic numbers ~C , ... , ~ n of height not exceeding B (The result supposes
n  4 , D > 4 ). P. L. CIJSOUW and M. WALDSCHMIDT (Linear forms and simultaneous
approximations) announced a similar result (which did not however explicitly com-
pute the constant), and particularly interestingly indicated that their method
avoided the inductive extrapolation argument which heretonow has been ~ feature of
all the proofs. It would appear that their idea may be particularly efficient if n



is small, say n = 2 or 3, and especially if D = 1 ; in general, this new ap-

proach probably is not very sharp in the parameters n and D. The bound (8) does
not depend upon any principles other than those described briefly above. I showed

that there was no difficulty of obtaining on appropriate p-adic analogue of the

result of Baker, above thus generalising and sharpening the result of KAUFMAN [16].
The results of Baker and of mine will appear in the proceedings of the conference

mentioned above (probably in the Springer Lecture Notes) possibly not in the form
or under the titles implied in this lecture.
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